Skip to main content

VDCC Based Sinusoidal Oscillators Using All Grounded Capacitors: A Series of Realization

Abstract

A series of eight new current mode sinusoidal oscillators employing a versatile and less explored active element, i.e., voltage differencing current conveyor, is presented in this manuscript. All the derived oscillators provide an explicit current output from their high impedance port. Enumerated circuits require only a single active element, two grounded capacitors, and two passive resistors. Amongst all newly proposed oscillator circuits, two configurations utilize only grounded passive elements and can simultaneously provide explicit current quadrature outputs. The condition and frequency of oscillation, in all cases, are simple and orthogonal. All regular mathematical analysis, such as non-ideal, sensitivity and parasitic, are presented to support the design ideas.In addition to the experimental results performed using commercially available integrated circuits, software simulation results of all the proposed circuits have also been included in the manuscript. In the former case the range of frequencies, for the designed oscillators, as low as 349 kHz and as high as 2.64 MHz where as the experimental range of frequencies lies in the span of 192 kHz to 5.8 MHz. The best figure for total harmonic distortion can be found as low as 1.2% for oscillator no. 8.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Senani, R., Bhaskar, D. R., Singh, V. K., & Sharma, R. K. (2016). Sinusoidal oscillators and waveform generators using modern electronic circuit building blocks. Basel: Springer.

    Google Scholar 

  2. 2.

    Djurhuus, T., Krozer, V., Vidkjær, J., & Johansen, T. K. (2005). Nonlinear analysis of a cross-coupled quadrature harmonic oscillator. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(11), 2276–2285.

    Google Scholar 

  3. 3.

    Barranco, B. L., Gotarredona, T. S., Martos, J. R., Ceballos-Caceres, J., Mora, J. M., & Barranco, B. L. (2004). A precise 90° quadrature OTA-C oscillator tunable in the 50–130-MHz range. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(4), 649–663.

    Google Scholar 

  4. 4.

    Kumar, A., & Chaturvedi, B. (2018). Novel CMOS dual-X current conveyor transconductance amplifier realization with current-mode multifunction filter and quadrature oscillator. Circuits, Systems, and Signal Processing, 37(6), 2250–2277.

    Google Scholar 

  5. 5.

    Saksit, S., Thongsopa, C., & Jaikla, W. (2015). New current-controlled current-mode sinusoidal quadrature oscillators using CDTAs. International Journal of Electronics and Communications, 69(1), 62–68.

    Google Scholar 

  6. 6.

    Jin, J., & Chunhua, W. (2014). Current-mode universal filter and quadrature oscillator using CDTAs. Turkish Journal of Electrical Engineering & Computer Sciences, 22(2), 276–286.

    Google Scholar 

  7. 7.

    Tangsrirat, W., & Tanjaroen, W. (2010). Current-mode sinusoidal quadrature oscillator with independent control of oscillation frequency and condition using CDTAs. Indian Journal of Pure and Applied Sciences, 48(5), 363–366.

    Google Scholar 

  8. 8.

    Prasad, D., Bhaskar, D. R., & Singh, A. K. (2008). Realisation of single-resistance-controlled sinusoidal oscillator: A new application of the CDTA. WSEAS Transactions on Electronics, 5(6), 257–259.

    Google Scholar 

  9. 9.

    Jin, J., & Wang, C. (2012). Single CDTA-based current-mode quadrature oscillator. International Journal of Electronics and Communication, 66(11), 933–936.

    Google Scholar 

  10. 10.

    Yeşil, A., & Kaçar, F. (2018). Current and voltage mode quadrature oscillator based on voltage differencing buffered amplifier. Electrica, 18(1), 6–12.

    Google Scholar 

  11. 11.

    Biolek, D., Keskin, A. Ü., & Biolkova, V. (2010). Grounded capacitor current mode single resistance-controlled oscillator using single modified current differencing transconductance amplifier. IET Circuits Devices System, 4(6), 496–502.

    Google Scholar 

  12. 12.

    Chien, H. C. (2014). New realizations of single OTRA-based sinusoidal oscillators. Active and Passive Electronic Components. https://doi.org/10.1155/2014/938987.

    Article  Google Scholar 

  13. 13.

    Avireni, S., & Pittala, C. S. (2014). Grounded resistance/capacitance-controlled sinusoidal oscillators using operational transresistance amplifier. WSEAS Transactions on Circuits and Systems, 13, 145–152.

    Google Scholar 

  14. 14.

    Jantakun, A., & Jaikla, W. (2013). Current-mode quadrature oscillator based on CCCDTAs with non-interactive dual-current control for both condition of oscillation and frequency of oscillation. Turkish Journal of Electrical Engineering & Computer Sciences, 21(1), 81–89.

    Google Scholar 

  15. 15.

    Prasad, D., Bhaskar, D. R., & Singh, A. K. (2011). Electronically controllable grounded capacitor current-mode quadrature oscillator using single MO-CCCDTA. Radioengineering, 20(1), 354–359.

    Google Scholar 

  16. 16.

    Khateb, F., Jaikla, W., Kubánek, D., & Khatib, N. (2013). Electronically tunable voltage-mode quadrature oscillator based on high performance CCCDBA. Analog Integrated Circuits and Signal Processing, 74(3), 499–505.

    Google Scholar 

  17. 17.

    Kumar, P., & Senani, R. (2007). Improved grounded-capacitor SRCO using only a single PFTFN. Analog Integrated Circuits and Signal Processing, 50(2), 147–149.

    Google Scholar 

  18. 18.

    Arora, T. S., & Gupta, S. (2018). A new voltage mode quadrature oscillator using grounded capacitors: An application of CDBA. Engineering Science and Technology an International Journal, 21(1), 43–49.

    Google Scholar 

  19. 19.

    Kalra, D., Gupta, S., & Arora, T.S. (2016). Single-resistance-controlled quadrature oscillator employing two current differencing buffered amplifier. In IEEE international conference on contemporary computing and informatics (IC3I 2016), AMITY University Noida.

  20. 20.

    Sharma, R. K., Arora, T. S., & Senani, R. (2017). On the realisation of canonic single-resistance-controlled oscillators using third generation current conveyors. IET Circuits, Devices and Systems, 11(1), 10–20.

    Google Scholar 

  21. 21.

    Herencsar, N., Koton, J., Vrba, K., & Lahiri, A. (2009). A new voltage-mode quadrature oscillator employing single DBTA and only grounded passive elements. IEICE Electronics Express, 6(24), 1708–1714.

    Google Scholar 

  22. 22.

    Horng, J. W., Wang, Z. R., & Yang, T. Y. (2011). Single ICCII sinusoidal oscillators employing grounded capacitors. Radioengineering, 20(3), 608–613.

    Google Scholar 

  23. 23.

    Tangsrirat, W., Pratya, M., & Tattaya, P. (2012). Current-mode high-Q bandpass filter and mixed-mode quadrature oscillator using ZC-CFTAs and grounded capacitors. Indian Journal of Pure and Applied Physics, 50, 600–607.

    Google Scholar 

  24. 24.

    Lahiri, A., Jaikla, W., & Siripruchyanun, M. (2010). Voltage-mode quadrature sinusoidal oscillator with current tunable properties. Analog Integrated Circuits and Signal Processing, 65(2), 321–325.

    Google Scholar 

  25. 25.

    Pushkar, K. L., Bhaskar, D. R., & Prasad, D. (2013). Single-resistance-controlled sinusoidal oscillator using single VD-DIBA. Active and Passive Electronic Components. https://doi.org/10.1155/2013/971936.

    Article  Google Scholar 

  26. 26.

    Prasad, D., Srivastava, M., & Bhaskar, D. R. (2013). Electronically controllable fully-uncoupled explicit current-mode quadrature oscillator using VDTAs and grounded capacitors. Circuits and Systems, 4(2), 169–174.

    Google Scholar 

  27. 27.

    Srivastava, D. K., Singh, V. K., & Senani, R. (2015). Novel single-CFOA-based sinusoidal oscillator capable of absorbing all parasitic impedances. American Journal of Electrical and Electronics Engineering, 3, 71–74.

    Google Scholar 

  28. 28.

    Biolek, D., Lahiri, A., Jaikla, W., Siripruchyanun, M., & Bajer, J. (2011). Realization of electronically tunable voltage-mode/current-mode quadrature sinusoidal oscillator using ZC-CG-CDBA. Microelectronics Journal, 42(10), 1116–1123.

    Google Scholar 

  29. 29.

    Prasad, D., Bhaskar, D. R., & Srivastava, M. (2014). New single VDCC-based explicit current-mode SRCO employing all grounded passive components. Electronics, 18(2), 81–88.

    Google Scholar 

  30. 30.

    Sotner, R., Jerabek, J., Prokop, R., & Kledrowetz, V. (2012). Simple CMOS voltage differencing current conveyor-based electronically tunable quadrature oscillator. Electronics Letter, 52(12), 1016–1018.

    Google Scholar 

  31. 31.

    Biolek, D., Senani, R., Biolkova, V., & Kolka, Z. (2008). Active elements for analog signal processing: Classification, review, and new proposals. Radioengineering, 17(4), 15–32.

    Google Scholar 

  32. 32.

    Sotner, R., Jerabek, J., Petrzela, J., Herencsar, N., Prokop, R., & Vrba, K. (2014). Second-order simple multiphase oscillator using Z-copy controlled-gain voltage differencing current conveyor. ElektronikaIrElektrotechnika, 20(9), 13–18.

    Google Scholar 

  33. 33.

    Sotner, R., Jerabek, J., Petrzela, J., & Dostal, T. (2016). Voltage differencing current conveyor based linearly controllable quadrature oscillators. In IEEE international conference on applied electronics (pp. 237–240).

  34. 34.

    Srivastava, M., & Prasad, D. (2016). VDCC based dual-mode quadrature sinusoidal oscillator with outputs at appropriate impedance levels. Advances in Electrical and Electronic Engineering, 14(2), 168–177.

    Google Scholar 

  35. 35.

    Gupta, M., & Arora, T. S. (2018). Realization of current mode universal filter and a dual-mode single resistance controlled quadrature oscillator employing VDCC and only grounded passive elements. Advances in Electrical and Electronic Engineering, 15(5), 833–845.

    Google Scholar 

  36. 36.

    Arora, T. S., Rohil, B., & Gupta, S. (2019). Fully integrable/cascadable CM universal filter and CM quadrature oscillator using VDCC and only grounded passive elements. Journal of Circuits, Systems and Computers World Scientific. https://doi.org/10.1142/s0218126619501810.

    Article  Google Scholar 

  37. 37.

    Kaçar, F., Yeşil, A., Minaei, S., & Kuntman, H. (2014). Positive/negative lossy/lossless grounded inductance simulators employing single VDCC and only two passive elements. International Journal of Electronics and Communication, 68(1), 73–78.

    Google Scholar 

  38. 38.

    Kaçar, F., Yeşil, A., & Gürkan, K. (2015). Design and experiment of VDCC-based voltage mode universal filter. Indian Journal of Pure and Applied Physics, 53(5), 341–349.

    Google Scholar 

  39. 39.

    Arora, T. S. (2020). A current-mode single-resistance-controlled oscillator employing VDCC and all grounded passive elements. Iranian Journal of Electrical and Electronic Engineering, 02(184), 191.

    Google Scholar 

  40. 40.

    Gupta, M., Dogra, P., & Arora, T. S. (2019). Novel current mode universal filter and dual-mode quadrature oscillator using VDCC and all grounded passive elements. Australian Journal of Electrical and Electronics Engineering, 16(4), 220–236.

    Google Scholar 

  41. 41.

    Arora, T.S. (2019). New current mode multi-function filter and single-resistance-controlled oscillator employing VDCC and only grounded passive components. In IEEE international conference on women institute of technology conference on electrical and computer engineering (WITCON ECE 2019) (pp. 177–182).

  42. 42.

    Senani, R., & Gupta, S. S. (1997). Synthesis of single resistance controlled oscillators using CFOAs: Simple state variable approach. IEE Proceedings of Circuits Devices System, 144(2), 104–106.

    Google Scholar 

  43. 43.

    Gupta, S. S., & Senani, R. (1998). State variable synthesis of single resistance controlled grounded capacitor oscillators using only two CFOAs. IEE Proceedings of Circuits Devices System, 145(2), 135–138.

    Google Scholar 

  44. 44.

    Gupta, S. S., & Senani, R. (1998). State variable synthesis of single resistance controlled grounded capacitor oscillators using only two CFOAs: Additional new realizations. IEE Proceedings of Circuits Devices System, 145, 415–418.

    Google Scholar 

  45. 45.

    Singh, B., Singh, A. K., & Senani, R. (2012). Realization of SRCOs: Another new application of DDAs. Analog Integrated Circuits and Signal Processing, 76(2), 267–272.

    Google Scholar 

  46. 46.

    Minaei, S., & Yuce, E. (2010). Novel voltage-mode all-pass filter based on using DVCCs. Circuits, Systems, and Signal Processing, 29(3), 391–402.

    MATH  Google Scholar 

  47. 47.

    Sotner, R., Jerabek, J., Herencsar, N., Hrubos, Z., Dostal, T., & Vrba, K. (2012). Study of adjustable gains for control of oscillation frequency and oscillation condition in 3R-2C oscillator. Radioengineering, 21(1), 392–402.

    Google Scholar 

  48. 48.

    Sotner, R., Hrubos, Z., Herencsar, N., Jerabek, J., Dostal, T., & Vrba, K. (2014). Precise electronically adjustable oscillator suitable for quadrature signal generation employing active elements with current and voltage gain control. Circuits, Systems, and Signal Processing, 33(1), 1–35.

    Google Scholar 

  49. 49.

    Sotner, R., Jerabek, J., Langhammer, L., Polak, J., Herencsar, N., Prokop, R., et al. (2015). Comparison of two solutions of quadrature oscillators with linear control of frequency of oscillation employing modern commercially available devices. Circuits, Systems, and Signal Processing, 34(11), 3449–3469.

    MathSciNet  Google Scholar 

  50. 50.

    Satipar, D., Intani, P., & Jaikla, W. (2017). Electronically tunable quadrature sinusoidal oscillator with equal output amplitudes during frequency tuning process. Journal of Electrical and Computer Engineering, 2017, 8575743.

  51. 51.

    OPA860-Wide Bandwidth Operational Transconductance Amplifier (OTA) and Buffer Texas Instruments, SBOS331C-June 2005-Revised August 2008. https://www.ti.com/lit/ds/symlink/opa860.pdf?ts=1596716713080&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FOPA86028-08-2008.

Download references

Acknowledgement

The experimental work was performed in Digital Electronics Lab of Electronics Engineering Department, National Institute of Technology, Uttarakhand (Srinagar), Uttarakhand (India). I am thankful to Mr. Chandra Pal Singh, Technician, Electronics Engineering department for his valuable support in carrying out the experimental work. I also acknowledge the efforts and support that has been extended by Ms. Soumya Gupta, Research Intern, at National Institute of Technology Uttarakhand, in preparation of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tajinder Singh Arora.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 9993 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arora, T.S. VDCC Based Sinusoidal Oscillators Using All Grounded Capacitors: A Series of Realization. Wireless Pers Commun 116, 383–409 (2021). https://doi.org/10.1007/s11277-020-07720-5

Download citation

Keywords

  • Sinusoidal oscillators
  • Current mode circuits
  • Quadrature output
  • Voltage differencing current conveyor
  • Grounded capacitors