Skip to main content
Log in

A 110–140 GHz Millimeter-Wave VCO Using Varactor and Bulk Effective Technique in 65 nm CMOS Process

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, an enhanced voltage controlled oscillator (VCO) at center frequency 125 GHz with tuning rang of 24% is presented. The proposed idea is based on the tuning capacitance using MOS varactor. The structure is consisted of applying an MOS varactor capacitor to the drain and bulk (in parallel) of NMOS transistor in 65 nm CMOS standard technology. The obtained output of the proposed VCO at 2nd harmonic is tunable at 110–140 GHz frequency with applying ± 1.2 input tuning voltage. Simulation results of the proposed circuit are obtained after extracting post layout (with total chip size of 0.07 mm2) and confirm theoretical results. Compared to the resent designs, the obtained results indicate that the proposed circuit has high tuning range, low die area and a good figure of merit @ 1.2 power supply voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Öjefors, E., Heinemann, B., & Pfeiffer, U. R. (2011). Active 220- and 325-GHz frequency multiplier chains in an SiGe HBT technology. IEEE Transactions on Microwave Theory and Techniques, 59(5), 1311–1318.

    Article  Google Scholar 

  2. Wu, C. Y., Chen, M. C., & Lo, Y. K. (2009). A phase-locked loop with injection-locked frequency multiplier in 0.18 μm CMOS for V-band applications. IEEE Transactions on Microwave Theory and Techniques, 57(7), 1629–1636.

    Article  Google Scholar 

  3. Jain, S., Zhang, N., & Belostotski, L. (2018). A 167-to-172 GHz 65-nm CMOS body-voltage-tuned harmonic-mode voltage controlled oscillator. Microwave and Optical Technology Letters. https://doi.org/10.1002/mop.31548.

    Article  Google Scholar 

  4. Seok, E., Shim, D., Mao, C., Han, R., Sankaran, S., Cao, C., et al. (2010). Progress and challenges towards terahertz CMOS integrated circuits. IEEE Journal of Solid-State Circuits, 45(8), 1554–1564.

    Article  Google Scholar 

  5. Zhang, J., Sharma, N., Choi, W., Shim, D., Zhong, Q., & Kenneth, K. O. (2015). 85-to-127 GHz CMOS signal generation using a quadrature VCO with passive coupling and broadband harmonic combining for rotational spectroscopy. IEEE Journal of Solid-State Circuits, 50(6), 1361–1371.

    Article  Google Scholar 

  6. Ahmadm, Z., Kim, I., Kenneth, K. O. (2015). 0.39–0.45 THz symmetric MOS-varactor frequency tripler in 65-nm CMOS. In: Proceedings of the 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

  7. Ullah, F., Yu Liu, X., Wang, M. M., & Sarfraz, H. Z. (2018). Bandwidth-enhanced differential VCO and varactor-coupled quadrature VCO for mmWave applications. AEU International Journal of Electronics and Communications, 95, 59–68.

    Article  Google Scholar 

  8. Razavi, B. (2012). RF microelectronics, communications engineering and emerging technologies series from ted rappaport (2nd ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  9. Cao, C., Seok, E., & Kenneth, K. O. (2006). 192 GHz push–push VCO in 0.13 lm CMOS. Electronics Letters, 42(4), 9–10.

    Article  Google Scholar 

  10. Wu, D., Huang, R., Wong, W., & Wang, Y. (2007). A 04-V low noise amplifier using forward body bias technology for 5 GHz application. IEEE Microwave and Wireless Components Letters, 17(7), 543–545.

    Article  Google Scholar 

  11. Chang, C. P., Chen, J. H., & Wang, Y. H. (2009). A fully integrated 5 GHz low-voltage LNA using forward body bias technology. IEEE Microwave and Wireless Components Letters. https://doi.org/10.1109/LMWC.2009.2013745.

    Article  Google Scholar 

  12. Jain, S., Zhang, N., Belostotski, L. (2017). Millimeter-wave CMOS PLL using a push-push oscillator. In: Proceedings of the 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE).

  13. Doan, C. H., Emami, S., Niknejad, A. M., & Brodersen, R. W. (2005). Millimeter-wave CMOS design. IEEE Journal of Solid-State Circuits, 40(1), 638–651.

    Article  Google Scholar 

  14. Post, M., Akbar, G., Curello, S., Gannavaram, W., Hafez, U., Jalan, K., Komeyli, J., Lin, N., Lindert, J., Park, J., Rizk, G., Sacks, C., Tsai, D., Yeh, P., Bai, C.-H. (2006). A 65 nm CMOS SOC technology featuring strained silicon transistors for RF applications. In: Proceedings of the IEEE, 2006 International Electron Devices Meeting.

  15. Chen, C. C., Jiang, M., Chang, L. M., Yeh, T. J., Liu, F. M., & Liu, S. (2009). Optimization and modeling for MOS varactors in 65 nm low power mixed-signal/radio frequency technology. Microwave and Optical Technology Letters. https://doi.org/10.1002/mop.24567.

    Article  Google Scholar 

  16. Yang, D., Ding, Y., & Huang, S. (2010). A 65-nm high-frequency low-noise CMOS-based RF SoC technology. IEEE Transactions on Electron Devices, 57(1), 328–335.

    Article  Google Scholar 

  17. Ho, C. C., Kuo, C. W., Chan, Y. J., Lien, W. Y., & Guo, J. C. (2014). 0.13 μm RF CMOS and varactors performance optimization by multiple gate layouts. IEEE Transactions on Electron Devices, 51(12), 2181–2185.

    Article  Google Scholar 

  18. Koo, H., Kim, C. Y., & Hong, S. (2015). A G-band standing-wave push–push VCO using a transmission-line resonator. IEEE Transactions on Microwave Theory and Techniques, 63(3), 173–177.

    Article  Google Scholar 

  19. Muralidharan, S. Wu, K., Hella, M. (2016) A 110–132 GHz VCO with 1.5 dBm peak output power and 18.2% tuning range in 130 nm SiGe BiCMOS for D-band transmitters. In: Proceedings of the 2016 IEEE 16th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF).

  20. Cheng, G., Li, Z., Li, Z., Han, T., & Tian, M. (2019). A 22-to-36.8 GHz low phase noise Colpitts VCO array in 0.13-μm SiGe BiCMOS technology. Microelectronics Journal, 88, 79–87.

    Article  Google Scholar 

  21. Volkaerts, W., Steyaert, M., & Reynaert, P. (2015). A 120 GHz QVCO with 16.2 GHz tuning range resistent against VCO pulling in 45 nm CMOS. Analog Integrated Circuits and Signal Processing, 2015(82), 359–368.

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank all people involved in this research work for their kind and responsible assistance special to Dr. Mahdi Mottaghi-Kashtiban.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghader Yosefi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neda, S., Yosefi, G. & Eskandarian, A. A 110–140 GHz Millimeter-Wave VCO Using Varactor and Bulk Effective Technique in 65 nm CMOS Process. Wireless Pers Commun 114, 3367–3382 (2020). https://doi.org/10.1007/s11277-020-07536-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07536-3

Keywords

Navigation