Skip to main content
Log in

Improving Throughput in Lossy Wired/Wireless Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless communication is more prone to random loss than wired communication because of noise and mobility. Over years researchers have developed TCP variants that do not decrease the send window when random loss arises. Years ago it was introduced TCP CERL algorithm that proved to present a high performance compared to other protocols. Here, we test CERL assuming two-way transmission of relatively heavy load and compare with TCP BIC, TCP NewReno, TCP Westwood+, TCP NewJersey and TCP Illinois. Simulation Results show that TCP CERL gains a 145%, 137%, 120%, 97% and 125% throughput improvement over New Reno, Bic, Westwood+, New Jersey and Illinois, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Briscoe, B., Brunstrom, A., Petlund, A., Hayes, D., Ros, D., Tsang, I.-J., Gjessing, S., Fairhurst, G., Griwodz, C., & Welzl, M. (2014). Reducing internet latency: A survey of techniques and their merits. Communications Surveys Tutorials (pp. 1–1). IEEE.

  2. Parvez, N., Mahanti, A., & Williamson, C. (2010). An Analytic Throughput Model for TCP NewReno. Proceedings of the IEEE/ACM TON, 18(2), 448–461.

    Article  Google Scholar 

  3. Biaz, S., Vaidya, N. H. (2005). ‘De-randomizing’ congestion losses to improve TCP performance over wired-wireless networks. IEEE/ACM Transactions on Networking, 13(3), 596–608.

    Article  Google Scholar 

  4. Foukalas, F., Gazis, V., & Alonistioti, N. (2008). Cross-layer design proposals for wireless mobile networks: A survey and taxonomy. IEEE Communications Surveys and Tutorials, 10(1), 70–85.

    Article  Google Scholar 

  5. Dalal, P., & Dasgupta, K. (2012). TCP performance issues and related enhancement schemes over wireless network environment. International Journal of Advanced Research in Computer Science and Software Engineering, 2, 453–459.

    Google Scholar 

  6. Tian, Y., Xu, K., & Ansari, N. (2005). TCP in wireless environments: Problems and solutions. IEEE Communications Magazine, 43(3), S27–S32.

    Article  Google Scholar 

  7. Wei, D. X., Jin, C., Low, S. H., & Hegde, S. (2006). FAST TCP: Motivation, architecture, algorithms, performance. IEEE/ACM Transactions on Networking, 14, 1246–1259.

    Article  Google Scholar 

  8. Afanasyev, A., Tilley, N., Reiher, P., & Kleinrock, L. (2010). Host-to-host congestion control for TCP. IEEE Communications Surveys and Tutorials, 12(3), 304–342.

    Article  Google Scholar 

  9. Gangadhar, S., Nguyen, T. A. N., Umapathi, G., & Sterbenz, J. P. (2013). TCP Westwood+ protocol implementation in ns-3. In Proceedings of the 6th International ICST Conference on Simulation Tools and Techniques (pp. 167–175), ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).

  10. El-Ocla, H. (2010). TCP CERL: Congestion control enhancement over wireless networks. Wireless Networks, 16(1), 183–198.

    Article  Google Scholar 

  11. Saedi T., & El-Ocla, H. (2019). Performance analysis of TCP CERL in wireless networks with random loss. In: IEEE Canadian conference of electrical and computer engineering (CCECE).

  12. Wang, P., Jiang, H., & Zhuang, W. (2006). IEEE 802.11e Enhancements for Voice Service. IEEE Wireless Communications, 13(1), 30–35.

    Article  Google Scholar 

  13. Contreras, J., Zeadally, S., & Guerrero-Ibanez, J. A. (2017). Internet of vehicles: Architecture, protocols, and security. IEEE Internet of Things Journal, 5(5), 3701–3709.

    Article  Google Scholar 

  14. Yaqoob, S., Ullah, A., Akbar, M., Imran, M., & Shoaib, M. (2019). Congestion avoidance through fog computing in internet of vehicles. Journal of Ambient Intelligence and Humanized Computing, 10, 3863–3877.

    Article  Google Scholar 

  15. Li, Y. T., Leith, D., & Shorten, R. N. (2007). Experimental evaluation of TCP Protocols for High-Speed Networks. IEEE/ACM Transactions on Networking., 15(1109), 1122.

    Google Scholar 

  16. Xu, L., Harfoush, K., & Rhee, I. (2004). “Binary increase congestion control for fast long-distance networks”, in Proc. Hong Kong: IEEE INFOCOM.

    Google Scholar 

  17. Xu, K., Tian, Y., & Ansari, N. (2005). Improving TCP performance in integrated wireless communications networks. Computer Networks, 47, 219–237.

    Article  Google Scholar 

  18. Kaur, N., Umrao, S., & Gujral, R. K. (2014). Simulation based analysis of TCP variants over MANET routing protocols using NS2. International Journal of Computer Applications, 99(16), 975–8887.

    Article  Google Scholar 

  19. Dunaytsev, R., Koucheryavy, Y., Harju, J. (2006). TCP NewReno throughput in the presence of correlated losses: The slow-but-steady variant. In: Proceedings of the 25th IEEE international conference on computer communications, INFOCOM.

  20. Park, H.-S., Lee, J.-Y., & Kim, B.-C. (2011). TCP performance degradation of in-sequence delivery in LTE link layer. International Journal of Advanced Science and Technology, 37, 27–36.

    Google Scholar 

  21. Callegari, C., et al. (2014). A survey of congestion control mechanisms in Linux TCP. In Distributed Computer and Communication Networks (pp. 28–42)

  22. Sathya Priya, S., & Murugan, K. (2015). Enhancing TCP fairness in wireless networks using dual queue approach with optimal queue selection. Wireless Personal Communications, 83(2), 1359–1372.

    Article  Google Scholar 

  23. Sreekumari, P., & Chung, S. H. (2011). Tcp nce: A unified solution for non-congestion events to improve the performance of tcp over wireless networks. EURASIP Journal on Wireless Communications and Networking, 2011, 1–20.

    Article  Google Scholar 

  24. Wu, J., & El-Ocla, H. (2004). TCP congestion avoidance model with congestive loss. In: IEEE international conference on networks.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hosam El-Ocla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saedi, T., El-Ocla, H. Improving Throughput in Lossy Wired/Wireless Networks. Wireless Pers Commun 114, 2315–2326 (2020). https://doi.org/10.1007/s11277-020-07477-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07477-x

Keywords

Navigation