Design and Analysis of Three-Way Relay Network Coding Schemes Based Differential Chaos Shift Keying Communication System

Abstract

In this paper, a three-way relay network coding schemes based differential chaos shift keying (DCSK) communication system are investigated. Two schemes of physical layer network coding (PLNC) schemes are proposed to communicate between three users. In the first scheme, three users send their information’s using DCSK modulation in different time slots to the relay, then two encoded bits are extracted from the received bits. After that, the relay broadcast the two encoded bits to three users using DCSK modulation in different time slots. To improve the throughput, energy and spectral efficiency of scheme-1, a new model of PNC scheme is developed based on multiple access DCSK (MA-DCSK) and quadrature chaos shift keying (QCSK) systems. In the first phase, the users send their information’s via MA-DCSK, while in the second phase, the relay broadcast the two encoded bits using QCSK system. In both schemes, the BER analytics are derived and compared with the simulated results under AWGN and multipath Rayleigh fading channel. Furthermore, throughput, link bandwidth and energy efficiency are also derived and compared for two schemes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Kaddoum, G., Parzysz, F., & Shokraneh, F. (2014). Low-complexity amplify-and-forward relaying protocol for non-coherent chaos-based communication system. IET Communications, 8(13), 1–9.

    Article  Google Scholar 

  2. 2.

    Kaddoum, G., & Shokraneh, F. (2015). Analog network coding for multi-user multicarrier differential chaos shift keying communication system. IEEE Transactions on Wireless Communications, 14(3), 1–14.

    Article  Google Scholar 

  3. 3.

    Kaddoum, G., & El-Hajjar, M. (2015). Analysis of network coding schemes for differential chaos shift keying communication system. arXiv:1505.02851.

  4. 4.

    Zhou, Q., Mow, W. H., Zhang, S., & Toupakaris, D. (2016). Two-way decode- and-forward for low complexity wireless relaying: Selective forwarding versus one bit soft forwarding. IEEE Transactions on Wireless Communications, 15(3), 1866–1880.

    Article  Google Scholar 

  5. 5.

    Katti, S., Gollakota, S., & Katabi, D. (2007). Embracing wireless interference: Analog network coding. ACMSIGCOMM Computer Communication Review, 37(4), 397–408.

    Article  Google Scholar 

  6. 6.

    Bassoli, R., Marques, H., Rodriguez, J., Shum, K., & Tafazolli, R. (2013). Network coding theory: A survey. IEEE Communications Surveys and Tutorials, 15(4), 1950–1978.

    Article  Google Scholar 

  7. 7.

    Galias, Z., & Maggio, G. M. (2001). Quadrature chaos-shift keying: Theory and performance analysis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(12), 1510–1519.

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Xia, Y., Tse, C. K., & Lau, F. C. M. (2004). Performance of differential chaos shift-keying digital communication systems over a multipath fading channel with delay spread. IEEE Transactions on Circuits and Systems II, 51(12), 680–684.

    Article  Google Scholar 

  9. 9.

    Huang, T., Wang, L., & Xu, W. (2016). Multilevel code-shifted differential-chaos-shift-keying system. IET Communications, 10(10), 1189–1195.

    Article  Google Scholar 

  10. 10.

    Kaddoum, G. (2016). Wireless chaos-based communication systems: A comprehensive survey. IEEE Access, 4, 2621–2648.

    Article  Google Scholar 

  11. 11.

    Hasan, F. S. (2017). Design and analysis of an OFDM-based short reference quadrature chaos shift keying communication system. Wireless Personal Communications, 96(2), 2205–2222.

    Article  Google Scholar 

  12. 12.

    Hasan, F. S. (2017). Design and analysis of an orthogonal chaotic vectors based differential chaos shift keying communication system. Al-Nahrain Journal for Engineering Sciences (NJES), 20(4), 952–958.

    Google Scholar 

  13. 13.

    Hasan, F. S., & Valenzuela, A. A. (2018). Design and analysis of an OFDM-based orthogonal chaotic vector shift keying communication system. IEEE Access, 6, 46322–46333.

    Article  Google Scholar 

  14. 14.

    Hasan, F. S., Zaiter, M. J., & Mohammed, R. A. (2019). Design and analysis of a wavelet packet modulation based differential chaos shift keying communication system. Wireless Personal Communications, 109(4), 2439–2450.

    Article  Google Scholar 

  15. 15.

    Cai, G., Fang, Y., Han, G., Xue, J., & Chen, G. (2018). Design and analysis of relay-selection strategies for two-way relay network-coded DCSK systems. IEEE Transaction on Vehicular Technology, 67(2), 1258–1271.

    Article  Google Scholar 

  16. 16.

    Fang, Y., Xu, J., Wang, L., & Chen, G. (2012). Performance of MIMO relay DCSK-CD systems over Nakagami fading channels. IEEE Transaction on Circuits and Systems, 60(3), 1–11.

    MathSciNet  Google Scholar 

  17. 17.

    Kumar, A., & Sahu, P. R. (2016). Performance analysis of DCSK-SR systems based on best relay selection in multiple MIMO relay environment. International Journal of Electronics and Commun, 70, 18–24.

    MathSciNet  Article  Google Scholar 

  18. 18.

    Chen, P., Fang, Y., Han, G., & Chen, G. (2016). An efficient transmission scheme for DCSK cooperative communication over multipath fading channel. IEEE Access, 4, 6364–6373.

    Article  Google Scholar 

  19. 19.

    Park, M., & Oh, S. K. (2009). An iterative network code optimization for three-way relay channels. In Proceedings of IEEE vehicular technology conference, Anchorage, Alaska, USA (pp. 1–5).

  20. 20.

    Jeon, Y., Kim, Y., Park, M., & Lee, I. (2011). Opportunistic scheduling for three-way relay systems with physical layer network coding. In IEEE 73rd vehicular technology conference (VTC Spring), Yokohama, Japan (pp. 1–5).

  21. 21.

    Matthiesen, B., Zappone, A., & Jorswieck, E. A. (2015). Resource allocation for energy-efficient 3-way relay channels. IEEE Transactions on Wireless Communications, 14(8), 4454–4468.

    Article  Google Scholar 

  22. 22.

    Li, W., Li, G., Zhu, S., & Liu, T. (2013). On the performance of multi-way relay communications via complex field network coding. In IEEE computing, communications and IT applications conference (ComComAp), Hong Kong China, (pp. 180–185).

  23. 23.

    Kulhandjian, M., D’Amours, C., & Kulhandjian, H. (2018). Multi-way physical-layer network coding via uniquely decodable codes. Hindawi Wireless Communications and Mobile Computing, 2018, 1–8.

    Article  Google Scholar 

  24. 24.

    Wang, H., & Chen, Q. (2019). LDPC based network coded cooperation design for multi-way relay networks. IEEE Access, 7, 62300–62311.

    Article  Google Scholar 

  25. 25.

    Tam, W. M., Lau, F. C. M., & Tse, C. K. (2003). Analysis of bit error rates for multiple access CSK and DCSK communication systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 50(5), 702–707.

    Article  Google Scholar 

  26. 26.

    Li, H., Dai, X., & Xu, P. (2004). A CDMA based multiple-access scheme for DCSK. In IEEE 6th CAS symposium on emerging technologies: Mobile and wireless communication, Shanghai (Vol. 1, pp. 313–316).

  27. 27.

    Zhou, Z., & Zhou, T. (2008). Performance of multiple-access DCSK communication over a multipath fading channel with delay spread. Circuits Systems and Signal Processing, 27(4), 507–518.

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Proakis, J. G., & Salehi, M. (2007). Digital communications. New York, NY: McGraw-Hill.

    Google Scholar 

  29. 29.

    Tse, D., & Viswanath, P. (2005). Fundamental of wireless communication. Cambridge: Cambridge University Press.

    MATH  Book  Google Scholar 

  30. 30.

    Marple, S. L. (1999). Computing the discrete-time “analytic” signal via FFT. IEEE Transactions on Signal Processing, 47(9), 2600–2603.

    MATH  Article  Google Scholar 

  31. 31.

    Proakis, J. G., & Manolakis, D. G. (2006). Digital signal processing: Principles, algorithms and applications (4th ed.). Upper Saddle River, NJ: Prentice-Hill.

    Google Scholar 

  32. 32.

    Ma, W., Du, J., & Xue, H. (2017). Design of reverse-DCSK for chaos based communication system. In 3rd IEEE international conference on computer and communications (pp. 743–747).

Download references

Acknowledgements

This work is supported by the college of Engineering/Mustansiriyah University (https://webmail.uomustansiriyah.edu.iq), Iraq, Baghdad.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fadhil Sahib Hasan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hasan, F.S. Design and Analysis of Three-Way Relay Network Coding Schemes Based Differential Chaos Shift Keying Communication System. Wireless Pers Commun 114, 29–47 (2020). https://doi.org/10.1007/s11277-020-07348-5

Download citation

Keywords

  • Differential chaos shift keying (DCSK)
  • Physical layer network coding
  • Three-way relay
  • Multiple access DCSK (MA-DCSK)
  • Quadrature chaos shift keying (QCSK)
  • Link bandwidth efficiency
  • Multipath Rayleigh fading channel