Skip to main content

Advertisement

Log in

Design and Analysis of Variation in Chlorophyll and Depth for Open Ocean Underwater Optical Communication

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The underwate communication is of great interest of research for many researchers because of increased dealings of human beings with world exists underwater. Underwater Commucation Technology (UCT) is becoming an important part of communication technologies. These include communication between divers, ships, and network system for autonomous underwater vehicles. However, optical communication with underwater exchange of information is challenged with many issues. In this paper, the attenuation for optical transmission is obervsed for optical waves that are absorbing inside water, in result, suspending particles and planktons produces optical scattering indirectly. In connection, underwater needs to rectify high attenuation regions for analysing ocean composition affects in Deep Ocean. This produces chlorophyll profiles that identify the attenuation in underwater communication.with high attenuation. In past studies, the constant attenuation is observed irrespective of depth of occean. Furthemore, the paper address, optical attenuation for underwater communication via depth dependent. The system is tested for 400–700 nm and 0–250 m depth for chlorophyll concentration profile (S1–S9). The system is demonstrated via GUI developed in Matlab that shows the optical attenuation at different depths underwater and along with that regions with deep chlorophyll maximum (DCM) are also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hu, Y., Wang, Y., & Chee, K. W. (2019). Optical communications and modulation techniques in 5G. In Smart grids and their communication systems (pp. 401–464). Singapore: Springer.

  2. Cen, N., Jagannath, J., Moretti, S., Guan, Z., & Melodia, T. (2019). LANET: Visible-light ad hoc networks. Ad Hoc Networks, 84, 107–123.

    Article  Google Scholar 

  3. Han, B., Zhao, W., Zheng, Y., Meng, J., Wang, T., Han, Y., … Xie, X. (2019). Experimental demonstration of quasi-omni-directional transmitter for underwater wireless optical communication based on blue LED array and freeform lens. Optics Communications, 434, 184–190.

  4. Das, B., Abdullah, M. F. L., Chowdhry, B. S., & Shah, N. S. M. (2017). A novel signal regeneration technique for high speed DPSK communication systems. Wireless Personal Communications, 96(2), 3249–3273.

    Article  Google Scholar 

  5. Stojanovic, M., & Preisig, J. (2009). Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Communications Magazine, 47(1), 84–89.

    Article  Google Scholar 

  6. Guggenheim, J. A., Zhang, E. Z., & Beard, P. C. (2017). A method for measuring the directional response of ultrasound receivers in the range 0.3–80 MHz using a laser-generated ultrasound source. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 64(12), 1857–1863.

    Article  Google Scholar 

  7. Kisler, R., & Sarradj, E. (2018). Plate silencers for broadband low frequency sound attenuation. Acta Acustica United with Acustica, 104(3), 521–527.

    Article  Google Scholar 

  8. Cossu, G., Sturniolo, A., Messa, A., Scaradozzi, D., & Ciaramella, E. (2018). Full-fledged 10Base-T ethernet underwater optical wireless communication system. IEEE Journal on Selected Areas in Communications, 36(1), 194–202.

    Article  Google Scholar 

  9. Xomalis, A., Demirtzioglou, I., Plum, E., Jung, Y., Nalla, V., Lacava, C., … Zheludev, N. I. (2018). Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. Nature Communications, 9(1), 182.

  10. Awan, K. M., Shah, P. A., Iqbal, K., Gillani, S., Ahmad, W., & Nam, Y. (2019). Underwater wireless sensor networks: A review of recent issues and challenges. Wireless Communications and Mobile Computing, 2019, 1–20.

    Google Scholar 

  11. Brezonik, P. L., Olmanson, L. G., Finlay, J. C., & Bauer, M. E. (2015). Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. Remote Sensing of Environment, 157, 199–215.

    Article  Google Scholar 

  12. Kaushal, H., & Kaddoum, G. (2016). Underwater optical wireless communication. IEEE Access, 4, 1518–1547.

    Article  Google Scholar 

  13. Zeng, Z., Fu, S., Zhang, H., Dong, Y., & Cheng, J. (2017). A survey of underwater optical wireless communications. IEEE Communications Surveys & Tutorials, 19(1), 204–238.

    Article  Google Scholar 

  14. Basore, P. A. (2019). Efficient computation of multidimensional lambertian optical absorption. IEEE Journal of Photovoltaics, 9(1), 106–111.

    Article  Google Scholar 

  15. Pierobon, S. C., Cheng, X., Graham, P. J., Nguyen, B., Karakolis, E. G., & Sinton, D. (2018). Emerging microalgae technology: A review. Sustainable Energy & Fuels, 2(1), 13–38.

    Article  Google Scholar 

  16. Bukata, R. P., Jerome, J. H., Kondratyev, A. S., & Pozdnyakov, D. V. (2018). Optical properties and remote sensing of inland and coastal waters. Boca Raton: CRC Press.

    Book  Google Scholar 

  17. Prabhakaran, S. S., Sahu, S. K., Dev, P. J., & Shanmugam, P. (2018). Modelling the light absorption coefficients of oceanic waters: Implications for underwater optical applications. Journal of Marine Systems, 181, 14–24.

    Article  Google Scholar 

  18. Rashed, A. N. Z., & Sharshar, H. A. (2013). Performance evaluation of short range underwater optical wireless communications for different ocean water types. Wireless Personal Communications, 72(1), 693–708.

    Article  Google Scholar 

  19. Giles, J. W., & Bankman, I. N. (2005, October). Underwater optical communications systems. Part 2: Basic design considerations. In IEEE military communications conference, 2005 (MILCOM 2005) (pp. 1700–1705). Alamitos: IEEE.

  20. Gabriel, C., Leon, P., & Rigaud, V. (2011, July). Channel modeling for underwater optical communication. In GLOBECOM 2011: IEEE global communications conference, 5–9 December 2011, Houston, USA.

  21. Han, S., Noh, Y., Liang, R., Chen, R., Cheng, Y. J., & Gerla, M. (2014). Evaluation of underwater optical-acoustic hybrid network. China Communications, 11(5), 49–59.

    Article  Google Scholar 

  22. Lurton, X. (2002). An introduction to underwater acoustics: Principles and applications. Berlin: Springer.

    Google Scholar 

  23. Haynes, J. M., L'Ecuyer, T. S., Stephens, G. L., Miller, S. D., Mitrescu, C., Wood, N. B., et al. (2009). Rainfall retrieval over the ocean with spaceborne W-band radar. Journal of Geophysical Research: Atmospheres, 114(D8), D00A22.

    Google Scholar 

  24. Jerlov, N. G. (2014). Optical oceanography (Vol. 5). Elsevier, New York.

  25. Shifrin, K. S. (1998). Physical optics of ocean water. Berlin: Springer.

    Google Scholar 

  26. Johnson, L. J., Green, R. J., & Leeson, M. S. (2014). Underwater optical wireless communications: Depth-dependent beam refraction. Applied Optics, 53(31), 7273–7277.

    Article  Google Scholar 

  27. Kameda, T., & Matsumura, S. (1998). Chlorophyll biomass off Sanriku, northwestern Pacific, estimated by Ocean Color and Temperature Scanner (OCTS) and a vertical distribution model. Journal of Oceanography, 54(5), 509–516.

    Article  Google Scholar 

  28. Uitz, J., Claustre, H., Morel, A., & Hooker, S. B. (2006). Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. Journal of Geophysical Research: Oceans, 111(C8), C08005.

    Article  Google Scholar 

Download references

Acknowledgements

This research work is carried in collobration with Faculty of Eelectrical and Electronic Engineering, Universiti Tun Huseein Onn Malaysia, Department of Electronic Engineering, Quaid-E-Awam University of Engineering, Science & Technology, Nawabshah, Sindh, Pakistan and Aalborg University of Denmark. The authors are thankful to the institutes for their support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhagwan Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahir, F.A., Das, B., Abdullah, M.F.L. et al. Design and Analysis of Variation in Chlorophyll and Depth for Open Ocean Underwater Optical Communication. Wireless Pers Commun 116, 1273–1291 (2021). https://doi.org/10.1007/s11277-020-07275-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07275-5

Keywords

Navigation