Skip to main content

Advertisement

Log in

A Proposed Efficient Hybrid Precoding Algorithm for Millimeter Wave Massive MIMO 5G Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Millimeter wave (mmWave) has been regarded as a candidate cellular band for future 5G networks. It exhibits an extension for current cellular bands, where its integrity with massive multiple-input-multiple output (MIMO) and precoding techniques offers a significant capacity improvements. Unfortunately, analog and/or digital precoders are not energy-efficient from mmWave massive MIMO perspectives whereas, one radio frequency (RF) chain per antenna element is required. Accordingly, the hybrid precoding techniques could be introduced as cost-effective solution. It implicates a low dimensional precoding that can be executed in digital domain, followed by a large dimensional analog beam-formers to steer antenna elements. In this paper, we propose a novel low complex and efficient hybrid precoding algorithm to design the analog and digital precoders/combiners for mmWave massive MIMO transceiver. We will show that our proposed precoder approaches the fully digital (unconstrained) precoder with a negligible performance loss that makes it stand as benchmark case. Particularly, we simply design the digital precoding stage based on modified water-filling wherein, the orthogonality criterion among transmitted data streams is guaranteed. Besides, the analog beam-formers are optimally designed via extracting steering angles from an alternative precoder which is derived from a tight and simple upper bound expression. Furthermore, the proposed algorithm will be extended to include the practical analog beam-formers that have limited phase shifter with finite angle resolution. As a result, we will develop a quantization technique, for the analog precoder, with precision up to two bits. Furthermore, we investigate the energy efficiency (EE) performance wherein, EE degradation can be avoided even with one bit of quantization. This will be confirmed through comparing with unconstrained and unquantized precoders. Also, spectral efficiency (SE) performance displays a remarkable gain when it is fairly compared with the state-of-art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hoydis, J., Ten Brink, S., & Debbah, M. (2013). Massive mimo in the ul/dl of cellular networks: How many antennas do we need? IEEE Journal on selected Areas in Communications, 31(2), 160–171.

    Article  Google Scholar 

  2. Li, C., Zhang, J., & Letaief, K. B. (2014). Throughput and energy efficiency analysis of small cell networks with multi-antenna base stations. IEEE Transactions on Wireless Communications, 13(5), 2505–2517.

    Article  Google Scholar 

  3. Salem, A., El-Rabie, S., & Shokair, M. (2018). Energy efficient ultra-dense networks (udns) based on multi-objective optimization framework. IET Networks, 7(6), 398–405.

    Article  Google Scholar 

  4. Doppler, K., Rinne, M., Wijting, C., Ribeiro, C. B., & Hugl, K. (2009). Device-to-device communication as an underlay to lte-advanced networks. IEEE Communications Magazine, 47(12), 42–49.

    Article  Google Scholar 

  5. Shi, Y., Zhang, J., Letaief, K. B., Bai, B., & Chen, W. (2015). Large-scale convex optimization for ultra-dense cloud-ran. IEEE Wireless Communications, 22(3), 84–91.

    Article  Google Scholar 

  6. Torkildson, E., Madhow, U., & Rodwell, M. (2011). Indoor millimeter wave mimo: Feasibility and performance. IEEE Transactions on Wireless Communications, 10(12), 4150–4160.

    Article  Google Scholar 

  7. Akdeniz, M. R., Liu, Y., Samimi, M. K., Sun, S., Rangan, S., Rappaport, T. S., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179.

    Article  Google Scholar 

  8. El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Z., & Heath, R. W. (2014). Spatially sparse precoding in millimeter wave mimo systems. IEEE Transactions on Wireless Communications, 13(3), 1499–1513.

    Article  Google Scholar 

  9. Rappaport, T. S., Heath, R. W, Jr., Daniels, R. C., & Murdock, J. N. (2014). Millimeter wave wireless communications. London: Pearson Education.

    Google Scholar 

  10. Love, D. J., & Heath, R. W. (2003). Equal gain transmission in multiple-input multiple-output wireless systems. IEEE Transactions on Communications, 51(7), 1102–1110.

    Article  Google Scholar 

  11. Zhang, X., Molisch, A. F., & Kung, S. Y. (2005). Variable-phase-shift-based rf-baseband codesign for mimo antenna selection. IEEE Transactions on Signal Processing, 53(11), 4091–4103.

    Article  MathSciNet  Google Scholar 

  12. Zheng, X., Xie, Y., Li, J., & Stoica, P. (2007). Mimo transmit beamforming under uniform elemental power constraint. IEEE Transactions on Signal Processing, 55(11), 5395–5406.

    Article  MathSciNet  Google Scholar 

  13. Venkateswaran, V., & van der Veen, A. J. (2010). Analog beamforming in mimo communications with phase shift networks and online channel estimation. IEEE Transactions on Signal Processing, 58(8), 4131–4143.

    Article  MathSciNet  Google Scholar 

  14. Roh, W., Seol, J. Y., Park, J., Lee, B., Lee, J., Kim, Y., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113.

    Article  Google Scholar 

  15. Sun, S., Rappaport, T. S., Heath, R. W., Nix, A., & Rangan, S. (2014). Mimo for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both? IEEE Communications Magazine, 52(12), 110–121.

    Article  Google Scholar 

  16. Alkhateeb, A., El Ayach, O., Leus, G., & Heath, R. W. (2014). Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal of Selected Topics in Signal Processing, 8(5), 831–846.

    Article  Google Scholar 

  17. Wang, P., Li, Y., Song, L., & Vucetic, B. (2015). Multi-gigabit millimeter wave wireless communications for 5G: From fixed access to cellular networks. IEEE Communications Magazine, 53(1), 168–178.

    Article  Google Scholar 

  18. Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.

    Article  Google Scholar 

  19. Lee, Y. Y., Wang, C. H., & Huang, Y. H. (2015). A hybrid rf/baseband precoding processor based on parallel-index-selection matrix-inversion-bypass simultaneous orthogonal matching pursuit for millimeter wave mimo systems. IEEE Transactions on Signal Processing, 63(2), 305–317.

    Article  MathSciNet  Google Scholar 

  20. Lee, J., & Lee, Y. H. (2014). Af relaying for millimeter wave communication systems with hybrid rf/baseband mimo processing. In 2014 IEEE Conference on Communications (ICC) (pp. 5838–5842). IEEE.

  21. Kim, M., & Lee, Y. H. (2015). Mse-based hybrid rf/baseband processing for millimeter-wave communication systems in mimo interference channels. IEEE Transactions on Vehicular Technology, 64(6), 2714–2720.

    Article  Google Scholar 

  22. Brady, J., Behdad, N., & Sayeed, A. M. (2013). Beamspace mimo for millimeter-wave communications: System architecture, modeling, analysis, and measurements. IEEE Transactions on Antennas and Propagation, 61(7), 3814–3827.

    Article  Google Scholar 

  23. Rusu, C., Méndez-Rial, R., González-Prelcicy, N., & Heath, R. W. (2015). Low complexity hybrid sparse precoding and combining in millimeter wave mimo systems. In 2015 IEEE International Conference on Communications (ICC) (pp. 1340–1345). IEEE.

  24. Zhang, E., & Huang, C. (2014). On achieving optimal rate of digital precoder by rf-baseband codesign for mimo systems. In 2014 IEEE 80th Vehicular Technology Conference (VTC Fall) (pp. 1–5). IEEE.

  25. Liang, L., Xu, W., & Dong, X. (2014). Low-complexity hybrid precoding in massive multiuser mimo systems. IEEE Wireless Communications Letters, 3(6), 653–656.

    Article  Google Scholar 

  26. Wang, G., & Ascheid, G. (2014). Joint pre/post-processing design for large millimeter wave hybrid spatial processing systems. In European Wireless 2014; 20th European Wireless Conference; Proceedings of. VDE (pp. 1–6).

  27. Sohrabi, F., & Yu, W. (2016). Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE Journal of Selected Topics in Signal Processing, 10(3), 501–513.

    Article  Google Scholar 

  28. Yu, X., Shen, J. C., Zhang, J., & Letaief, K. B. (2016). Alternating minimization algorithms for hybrid precoding in millimeter wave mimo systems. IEEE Journal of Selected Topics in Signal Processing, 10(3), 485–500.

    Article  Google Scholar 

  29. Love, D. J., & Heath, R. W. (2005). Limited feedback unitary precoding for spatial multiplexing systems. IEEE Transactions on Information Theory, 51(8), 2967–2976.

    Article  MathSciNet  Google Scholar 

  30. Singh, J., & Ramakrishna, S. (2015). On the feasibility of codebook-based beamforming in millimeter wave systems with multiple antenna arrays. IEEE Transactions on Wireless Communications, 14(5), 2670–2683.

    Article  Google Scholar 

  31. Dai, L., Gao, X., Quan, J., Han, S., & Chih-Lin, I. (2015). Near-optimal hybrid analog and digital precoding for downlink mmwave massive mimo systems. In 2015 IEEE International Conference on Communications (ICC) (pp. 1334–1339). IEEE.

  32. Han, S., Chih-Lin, I., Xu, Z., & Rowell, C. (2015). Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Communications Magazine, 53(1), 186–194.

    Article  Google Scholar 

  33. Zhang, J. A., Huang, X., Dyadyuk, V., & Guo, Y. J. (2015). Massive hybrid antenna array for millimeter-wave cellular communications. IEEE Wireless Communications, 22(1), 79–87.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdelaziz Salem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, A.A., El-Rabaie, S. & Shokair, M. A Proposed Efficient Hybrid Precoding Algorithm for Millimeter Wave Massive MIMO 5G Networks. Wireless Pers Commun 112, 149–167 (2020). https://doi.org/10.1007/s11277-019-07020-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-07020-7

Keywords

Navigation