Skip to main content
Log in

Mean Field Games Theoretic for Mobile Privacy Security Enhancement in Edge Computing

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Edge computing paradigm extends the cloud service to the edge of networks and reduces service latency to edge users. Meanwhile, the characteristics of edge computing, such as mobility and heterogeneity, arise new privacy security challenges. Current research on privacy security relies on information security techniques like encryption and anonymization. In this paper, we present an application of mean field game theory for privacy leakage with large scale edge devices in edge computing because the edge devices are resource constrained. The contributions are threefold: first, we construct an individual cost function with a mean field term and discuss the evolution of the state if the number of devices is large enough. Subsequently, we elaborate the Nash equilibrium of the mean field game models which are coupled through the Hamiltonian–Jacobi–Bellman (HJB) backward and Fokker–Planck–Kolmogorov (FPK) forward equations. In addition, an approximate method is introduced to analyze the stable solution of the state. Finally, numerical examples are provided to illustrate the stability of the state and the presented strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shi, W., Cao, J., Zhang, Q., et al. (2016). Edge computing: Vision and challenges[J]. IEEE Internet of Things Journal,3(5), 637–646.

    Article  Google Scholar 

  2. ECC. (2016). White paper of edge computing consortium. ECC, Beijing, China, White Paper.

  3. Roman, R., Lopez, J., & Mambo, M. (2016). Mobile edge computing, Fog et al.: A survey and analysis of security threats and challenges[J]. Future Generation Computer Systems,78, 680–698.

    Article  Google Scholar 

  4. Polla, M. L., Martinelli, F., & Sgandurra, D. (2013). A survey on security for mobile devices[J]. IEEE Communications Surveys & Tutorials,15(1), 446–471.

    Article  Google Scholar 

  5. Zhang, J., Chen, B., Zhao, Y., et al. (2018). Data security and privacy-preserving in edge computing paradigm: Survey and open issues[J]. IEEE Access,6, 18209–18237.

    Article  Google Scholar 

  6. Zhang, K., Yang, K., Liang, X., et al. (2015). Security and privacy for mobile healthcare networks: From a quality of protection perspective[J]. IEEE Wireless Communications,22(4), 104–112.

    Article  Google Scholar 

  7. Aazam, M., Huh & E.N. (2015). E-HAMC: Leveraging fog computing for emergency alert service[C]. In IEEE international conference on pervasive computing and communication workshops (pp. 518–523). IEEE.

  8. Cao, Y., Chen, S., Hou, P., et al. (2015). FAST: A fog computing assisted distributed analytics system to monitor fall for stroke mitigation[C]. In IEEE international conference on networking, architecture and storage (pp. 2–11). IEEE Computer Society.

  9. Abbas, N., Zhang, Y., Taherkordi, A., et al. (2018). Mobile edge computing: A survey[J]. IEEE Internet of Things Journal,5(1), 450–465.

    Article  Google Scholar 

  10. Zhang, H., Wang, Y., Du, X., et al. (2018). Preserving location privacy in mobile edge computing[J]. arXiv preprint arXiv:1804.01636.

  11. Zhang, Y., Chen, X., Li, J., et al. (2017). Ensuring attribute privacy protection and fast decryption for outsourced data security in mobile cloud computing[J]. Information Sciences,379, 42–61.

    Article  Google Scholar 

  12. Jia, W., Zhu, H., Cao, Z., et al. (2011). SDSM: A secure data service mechanism in mobile cloud computing[C]. In 2011 IEEE conference on computer communications workshops (INFOCOM WKSHPS) (pp. 1060–1065). IEEE.

  13. Mukherjee, M., Matam, R., Shu, L., et al. (2017). Security and privacy in fog computing: challenges[J]. IEEE Access,PP(99), 1.

    Google Scholar 

  14. Lu, R., Heung, K., Lashkari, A. H., et al. (2017). A lightweight privacy-preserving data aggregation scheme for fog computing-enhanced IoT[J]. IEEE Access,5, 3302–3312.

    Article  Google Scholar 

  15. Huang, Q., Yang, Y., & Wang, L. (2017). Secure data access control with ciphertext update and computation outsourcing in fog computing for internet of things[J]. IEEE Access,5, 12941–12950.

    Article  Google Scholar 

  16. Mao, Y., You, C., Zhang, J., et al. (2017). Mobile edge computing: Survey and research outlook[J]. arXiv preprint arXiv:1701.01090.

  17. Shokri, R., Theodorakopoulos, G., & Troncoso, C. (2017). Privacy games along location traces: A game-theoretic framework for optimizing location privacy[J]. ACM Transactions on Privacy and Security (TOPS),19(4), 11.

    Google Scholar 

  18. Du, J., Jiang, C., Chen, K. C., et al. (2018). Community-structured evolutionary game for privacy protection in social networks[J]. IEEE Transactions on Information Forensics and Security,13(3), 574–589.

    Article  Google Scholar 

  19. Huang, M., Malhame, R. P., & Caines, P. E. (2006). Large population stochastic dynamic games: Closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle[J]. Communications in Information and Systems,6(3), 221–252.

    Article  MathSciNet  Google Scholar 

  20. Huang, M., Caines, P. E., & Malhame, R. P. (2007). Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized, ε-Nash equilibria[J]. IEEE Transactions on Automatic Control,52(9), 1560–1571.

    Article  MathSciNet  Google Scholar 

  21. Lasry, J. M., & Lions, P. L. (2007). Mean field games[J]. Japanese Journal of Mathematics,2(1), 229–260.

    Article  MathSciNet  Google Scholar 

  22. Bensoussan, A., Chau, M. H., & Yam, S. C. (2016). Mean field games with a dominating player[M]. New York: Springer.

    Book  Google Scholar 

  23. Onwubolu, G. (2009). Mean field games and applications to economics[J]. Lecture Notes in Mathematics,7(2), 205–266.

    Google Scholar 

  24. Djehiche, B., Tcheukam, A., Tembine, H. (2016). Mean-field-type games in engineering[J]. arXiv preprint arXiv:1605.03281

  25. Mériaux, F., Varma, V., Lasaulce, S. (2012). Mean field energy games in wireless networks[C]. In 2012 conference record of the forty sixth asilomar conference on signals, systems and computers (ASILOMAR), (pp. 671–675). IEEE.

  26. Bauso, D., Tembine, H., & Basar, T. (2016). Opinion dynamics in social networks through mean-field games[J]. SIAM Journal on Control and Optimization,54(6), 3225–3257.

    Article  MathSciNet  Google Scholar 

  27. Bauso, D., Tembine, H., & Başar, T. (2016). Robust mean field games[J]. Dynamic Games and Applications,6(3), 277–303.

    Article  MathSciNet  Google Scholar 

  28. Tembine, H., Zhu, Q., & Başar, T. (2014). Risk-sensitive mean-field games[J]. IEEE Transactions on Automatic Control,59(4), 835–850.

    Article  MathSciNet  Google Scholar 

  29. Bensoussan, A., Frehse, J., & Yam, P. (2013). Mean field games and mean field type control theory[M]. New York: Springer.

    Book  Google Scholar 

  30. Wang, Y., Yu, F. R., Tang, H., et al. (2014). A mean field game theoretic approach for security enhancements in mobile ad hoc networks[J]. IEEE Transactions on Wireless Communications,13(3), 1616–1627.

    Article  Google Scholar 

  31. Miao, L., & Li, S. (2017). Cyber security based on mean field game model of the defender: Attacker strategies[J]. International Journal of Distributed Sensor Networks,13(10), 1550147717737908.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the anonymous reviewers who read the drafts and made many helpful suggestions. This work is supported by the National Science Foundation Project of P. R. China (Nos. 61501026 and 1603116), the Foundation of Science and Technology on Information Assurance Laboratory (No. KJ-17-101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Miao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, L., Wang, L., Li, S. et al. Mean Field Games Theoretic for Mobile Privacy Security Enhancement in Edge Computing. Wireless Pers Commun 111, 2045–2063 (2020). https://doi.org/10.1007/s11277-019-06971-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06971-1

Keywords

Navigation