Skip to main content

Advertisement

Log in

A Sleep Scheduling Target Tracking Research for Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Moving target tracking of sensor networks is an important application. The sensor nodes cooperate in the networks to discover the target, and the target’s perceptual information is feeded back to the user. In order to effectively reduce the network energy consumption and improve the tracking quality, a target tracking protocol is proposed based on two-stage sleep scheduling. The whole tracking process is divided into two stages in the protocol. According to the different requirements of node density, the different sleep scheduling mechanism is adopted. In this paper, the proposed protocol is further optimized to ensure the tracking quality while minimizing system energy consumption. Finally, the validity of the proposed protocol was verified with 36 sensor nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sun, W., Gao, L., et al. (2018). Multiple target tracking for sonar system under range-doppler coupling. Journal of Signal Processing,34(7), 757–765. https://doi.org/10.16798/j.issn.1003-0530.2018.07.001.

    Article  Google Scholar 

  2. Jing, Y., Guo, B., et al. (2019). Crowd tracker: Object tracking using mobile crowd sensing. Journal of Computer Research and Development,56(2), 328–337. https://doi.org/10.7544/issn1000-1239.2019.20170808.

    Article  Google Scholar 

  3. Liu, H., He, Y., et al. (2019). Infrared target tracking algorithm based on multiple feature fusion and region of interest prediction. Acta Photonica Sinica,48(7), 102–117. https://doi.org/10.3788/gzxb20194807.0710004.

    Article  MathSciNet  Google Scholar 

  4. Ding, M., & Cheng, X. Z. (2009). Fault-tolerant target tracking in sensor networks. In Proceedings of the 10th ACM international symposiumon mobile ad hoc networking and computing (MOBIHOC2009) (pp. 125–134). New Orleans: ACM.

  5. Meng, L., & Yang, X. (2019). A survey of object tracking algorithms. Acta Automatica Sinica,45(7), 1244–1260. https://doi.org/10.16383/j.aas.c180277.

    Article  MATH  Google Scholar 

  6. Cheng, X., Song, L. P., et al. (2019). Group target tracking algorithm based on labeled box particle probability hypothesis density. Systems Engineering and Electronics,41(8), 1677–1685. https://doi.org/10.3969/j.issn.1001-506x.2019.08.01.

    Article  Google Scholar 

  7. Zheng, B. Q., Li, B. Q., et al. (2019). Distributed target tracking based on adaptive consensus UKF. Optics and Precision Engineering,27(1), 260–270. https://doi.org/10.3788/OPE.20192701.0260.

    Article  Google Scholar 

  8. Dai, H., Zou, J., et al. (2015). Adaptive Kalman filter combined with prediction and fault tolerance for target tracking. Journal of Nanjing University of Science and Technology,1, 108–114. https://doi.org/10.14177/j.cnki.32-1397n.2015.39.01.018.

    Article  Google Scholar 

  9. Xu, G. G., Shan, G. L., et al. (2019). Non-myopic scheduling method of active mobile sensor for target tracking. Chinese Journal of Sensors and Actuators,32(2), 244–250. https://doi.org/10.3969/j.issn.1004-1699.2019.02.015.

    Article  Google Scholar 

  10. Xu, G. G., Shan, G. L., et al. (2019). Non-myopic scheduling method of multiple passive mobile sensors based on markov decision process and posterior Cramér–Rao lower bound. Journal of Xi’an Jiaotong University,53(6), 125–133. https://doi.org/10.7652/xjtuxb201906017.

    Article  Google Scholar 

  11. Guan, H. Y., Ouyang, J. K., et al. (2019). Improved LCT tracking algorithm based on feature fusion. Computer Engineering,45(8), 241–247. https://doi.org/10.19678/j.issn.1000-3428.0051612.

    Article  Google Scholar 

  12. Wang, S. L., Zhang, J. C., et al. (2019). Target tracking algorithm with double-type agents based on flocking control. Control Engineering of China,26(5), 935–940. https://doi.org/10.14107/j.cnki.kzgc.170022.

    Article  Google Scholar 

  13. Wang, Q. Y., Feng, H., et al. (2019). Target motion model estimation and sensor scheduling for tracking tasks in wireless sensor networks. Journal of Fudan University (Natural Science),58(2), 221–230.

    MATH  Google Scholar 

  14. Dutta P., Grimmer M., et al. (2005). Design of a wireless sensor network platform for detecting rare, random, and ephemeral events. In Proceedings of the 4th international symposium on information processing in sensor networks (IPSN 2005) (pp. 57–65). Los Angeles: IEEE Computer Society.

  15. D’ Costa, A., & Sayeed, A. (2003). Collaborative signal processing for distributed classification in sensor networks. In Proceedings of the 2nd international workshop on information processing in sensors networks (IPSN 2003) (pp. 193–208), Palo Alto, CA, USA.

  16. Li, Dan, Wong, K. D., et al. (2002). Detection, classification, and tracking of targets in distributed sensor networks. IEEE Signal Processing Magazines,19(2), 17–29.

    Article  Google Scholar 

  17. McErlean, D., & Narayanan, S. (2002). Distributed detection and tracking in sensor networks. In Proceedings of the 36th Asilomar conference on signals, systems and computers (pp. 1174–1178). Pacific Grove.

  18. Zhao, F., Shin, J., et al. (2002). Information-driven dynamic sensor collaboration for tracking applications. IEEE Signal Processing Magazines,19(2), 61–72.

    Article  Google Scholar 

  19. Srinivas A., Zussman G., et al. (2006). Mobile backbone networks construction and maintenance. In Proceedings of the 7th ACM international symposiumon mobile ad hoc network and computing (Mobihoc 2006) (pp. 166–177), Florence.

  20. He, T., Vicaire, P., Yan, T., et al. (2006). Achieving real-time target tracking using wireless sensor networks. In Proceedings of the 12th IEEE real-time and embedded technology and applications symposium (RTAS 2006) (pp. 37–48). Bellevue: ACM.

  21. Gonzalez, T. (1991). Covering a set of points in multidimensional space. Information Processing Letters,40, 181–188.

    Article  MathSciNet  Google Scholar 

  22. Ross, S. M. (2014). Introduction to probability models (11th ed.). Berkeley, CA: Academic Press. https://doi.org/10.1016/B978-0-12-407948-9.00012-8.

    Book  MATH  Google Scholar 

  23. Cao, Q., Abdelzaher, T., He, T., & Stankovic, J. (2005). Towards optimal sleep scheduling in sensor networks for rare-event detection. In Proceedings of the 4th international symposium on information processing in sensor networks (IPSN 2005) (pp. 20–27). Los Angeles: IEEE Computer Society.

  24. Gui, C., & Mohapatra, P. (2004). Power conservation and quality of surveillance in target tracking sensor networks. In Proceedings of the 10th international conference on mobile computing and networking (MobiCom 2004) (pp. 129–143). Philadelphia.

  25. Shrivastava N., Mudumbai, R., et al. (2006). Target tracking with binary proximity sensors: Fundamental limits, minimal description, and algorithm. In Proceedings of the 4th international conference on embedded network sensors systems (Sensys 2006) (pp. 251–264), Boulder, CO, USA.

  26. Singh J., Madhow U., et al. (2007). Tracking multiple targets using binary proximity sensors. In Proceedings of the 6th international symposium on information processing in sensor networks (IPSN 2007) (pp. 529–538), Cambridge.

  27. Zhang, W. S., & Cao, G. H. (2004). DCTC: Dynamic convoy tree-based collaboration for target tracking in sensor networks. IEEE Transactions on Wireless Communications,3(5), 1689–1701.

    Article  Google Scholar 

  28. Vicaire, P., He, T., et al. (2009). Achieving long-term surveillance in VigilNet. ACM Transactions on Sensor Networks (TOSN),5(1), 1–39.

    Article  Google Scholar 

  29. Jeong, J., Hwang, T., et al. (2007). MCTA: Target tracking algorithm based on minimal contour in wireless sensor networks. In Proceedings of the 26th IEEE international conference on computer communications (Infocom 2007) (pp. 2371–2375). Anchorage: IEEE Computer Society.

Download references

Acknowledgements

This work is sponsored by the Scientific Research Project (No. 14A084) of Hunan Provincial Education Department, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingfang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiong, P., Wang, J. A Sleep Scheduling Target Tracking Research for Sensor Networks. Wireless Pers Commun 111, 1723–1740 (2020). https://doi.org/10.1007/s11277-019-06953-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06953-3

Keywords

Navigation