Skip to main content
Log in

SINR Analysis and Interference Management of Macrocell Cellular Networks in Dense Urban Environments

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The increasing growth of wireless applications leads to the congestion of radio spectrum below 10 GHz. This has slowed down the growth of high data rate applications due to the limited bandwidth of currently used frequency bands. This prompted wireless service providers to look for 30–300 GHz frequency band for mobile Broadband and enhanced mobile Broadband services. In this paper, the performance of 5G cellular networks at 30 GHz frequency by suppressing the interference caused by multiple transmissions from potential interferers sharing the same physical medium has been studied. Here initially the appropriate interference model that can predict the outage events in 5G cellular networks in any scenario has been investigated. Next using a cellular network site in dense urban environment with high traffic loads, user density and pedestrian and vehicular movement was created. The signal-to-interference-plus-noise ratio (SINR) is visualized for different antenna systems on a map using real geospatial information. The SINR maps of single antenna element and antenna array are plotted and compared. Both Free-space propagation model and Close-in-Propagation model are used to compare the results. Also using a uniform planar array of antennas on network-side the directionality increases hence interference reduces and higher values of SINR are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Akdeniz, M., Liu, Y., Samimi, M., Sun, S., Rangan, S., Rappaport, T., et al. (2014). _Millimeter wave channel modeling and cellular capacity evaluation,_ IEEE. IEEE Journal on Selected Areas in Communications,32(6), 1164–1179.

    Article  Google Scholar 

  2. Shokri-Ghadikolaei, H., Fischione, C., Fodor, G., Popovski, P., & Zorzi, M. (2015). Millimeter wave cellular networks: A MAC layer perspective. IEEE Transactions on Communications,63(10), 3437–3458.

    Article  Google Scholar 

  3. Di Renzo, M. (2015). _Stochastic geometry modeling and analysis of multi-tiermillimeter wave cellular networks. IEEE Transactions on Wireless Communications,14(9), 5038–5057.

    Article  Google Scholar 

  4. Rappaport, T. S., Heath, R., Daniels, R. C., & Murdock, J. N. (2014) Millimeter Wave Wireless Communications. Pearson Education.

  5. Jiang, X., Shokri-Ghadikolaei, H., Fischione, C., & Pang, Z. (2016) A simplified interference model for outdoor millimeter wave networks. In International wireless internet conference (pp. 101–108). Springer, Cham.

  6. Akdeniz, M. R., & Rangan, S. (2013). Optimal wireless scheduling with interference cancellation. In Proceedings of IEEE international symposim infomation theory, Istanbul, Turkey, July 2013 (pp. 246–50).

  7. Draft new Report ITU-R M.[IMT-2020.EVAL]—Guidelines for evaluation of radio interface technologies for IMT-2020.

  8. Abdrashitov, V., Nam, W., & Bai, D. (2014). Rate and UESelection algorithms for interference-aware receivers. Proc. IEEE VTC 2014-Spring, May 2014, Seoul, Korea.

  9. Nam, W., Bai, D., Lee, J., & Kang, I. (2014). Advanced interference management for 5G cellular networks. IEEE Communications Magazine,52(5), 52–60.

    Article  Google Scholar 

  10. Report ITU-R M.2135-1, “Guidelines for evaluation of radio interface technologies for IMT-Advanced”, 2009. https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2135-1-2009-PDF-E.pdf.

  11. Le,L. B., Modiano, E., Joo, C., & Shroff, N. B. (2010). Longest-queue-first scheduling under SINR interference model. In Proceedings on ACM international symposium on mobile Ad hoc Networking and Computing (MobiHoc) (pp. 41–50).

  12. Weber, S. P., Andrews, J. G., Yang, X., & De Veciana, G. (2007). Transmission capacity of wireless ad hoc networks with successive interference cancellation. IEEE Transactions on Information Theory,53(8), 2799–2814.

    Article  MathSciNet  Google Scholar 

  13. Shokri-Ghadikolaei, H., Fischione, C., & Modiano, E. (2016). Interference models similarity index. KTH Royal Institute of Technology, Tech.Rep., available upon request.

  14. Chiang, M., Hande, P., Lan, T., & Tan, C. W. (2008). Power control in wireless cellular networks. Foundations and Trends® in Networking,2(4), 381–533.

    Article  Google Scholar 

  15. Freeman, R. L. (2015). Telecommunication system engineering (Vol. 82). Hoboken: Wiley.

    Google Scholar 

  16. Sun, S., et al. (2016). Investigation of prediction accuracy, sensitivity, and parameter stability of large-scale propagation path loss models for 5G wireless communications. IEEE Transactions on Vehicular Technology,65(5), 2843–2860.

    Article  Google Scholar 

  17. Sun, S. et al. (2016). Propagation path loss models for 5G urban micro- and macro-cellular scenarios. In Proceedings on IEEE 83rd VTC Spring, Nanjing, China, May 2016. [Online]. Available: http://arxiv.org/abs/1511.07311.

  18. Sun,S., Mac Cartney, Jr. G. R., & Rappaport, T. S. (2016). Millimeter-wave distance-dependent large-scale propagation measurements and path loss models for outdoor and indoor 5G systems. In Proceedings on 10th EuCAP, Davos, Switzerland, Apr. 2016. [Online]. Available: http://arxiv.org/abs/1511.07345.

  19. Rappaport, T. S., MacCartney, G. R., Jr., Samimi, M. K., & Sun, S. (2015). Wide band millimeter-wave propagation measurements and channel models for future wireless communication system design (Invited Paper). IEEE Transactions on Communications,63(9), 3029–3056.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusra Banday.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banday, Y., Rather, G.M. & Begh, G.R. SINR Analysis and Interference Management of Macrocell Cellular Networks in Dense Urban Environments. Wireless Pers Commun 111, 1645–1665 (2020). https://doi.org/10.1007/s11277-019-06947-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06947-1

Keywords

Navigation