Skip to main content
Log in

Spectrum Sharing Paradigm Under Primary Interference and Nakagami-m Fading: Security Analysis

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The spectrum sharing paradigm is a promising countermeasure to the spectrum under-utilization problem. However, it causes both primary interference (inflicted by primary transmitters upon secondary receivers) and secondary interference (inflicted by secondary transmitters upon primary receivers) and un-secures information transmission. Most works ignored the primary interference and considered the Rayleigh fading in evaluating the information security of the spectrum sharing paradigm. This paper generalizes these works with considerations of the primary interference and the Nakagami-m fading. First, the exact expression of the secrecy outage probability is proposed for the spectrum sharing paradigm under considerations of both primary/secondary interferences, the Nakagami-m fading, and the peak transmit and interference power constraints. Then, computer simulations are provided to corroborate the proposed expression. Finally, numerous simulation/theory results are generated to assess the security performance in key system parameters such as the fading severity degree, the primary interference level, the peak transmit power, the peak interference power, the security threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ho-Van, K. (2017). Influence of channel information imperfection on outage probability of cooperative cognitive networks with partial relay selection. Wireless Personal Communications, 94(4), 3285–3302.

    Article  Google Scholar 

  2. Xu, X., Yang, W., & Cai, Y. (2017). Opportunistic relay selection improves reliability–reliability tradeoff and security–reliability tradeoff in random cognitive radio networks. IET Communications, 11(3), 335–343.

    Article  Google Scholar 

  3. Barros, J. & Rodrigues, M. (2006). Secrecy capacity of wireless channels. In Proceedings of IEEE international symposium on information theory: Seattle, WA, USA (pp. 356–360).

  4. Simon, M. K., & Alouini, M. S. (2005). Digital communication over fading channels. Hoboken: Wiley.

    Google Scholar 

  5. Wang, C., & Wang, H. M. (2014). On the secrecy throughput maximization for MISO cognitive radio network in slow fading channels. IEEE Transactions on Information Forensics and Security, 9(11), 1814–1827.

    Article  Google Scholar 

  6. Zhang, H., Sun, P., Li, C., Huang, Y., & Yang, L. (2017). Cooperative precoding for wireless energy transfer and secure cognitive radio coexistence systems. IEEE Signal Processing Letters, 24(5), 540–544.

    Article  Google Scholar 

  7. Wang, D., Ren, P., Du, Q., Sun, L., & Wang, Y. (2016). Cooperative relaying and jamming for primary secure communication in cognitive two-way networks. In Proceedings of IEEE VTC, Nanjing, China (vol. 15–18, pp. 1–5).

  8. Singh, A., Bhatnagar, M. R., & Mallik, R. K. (2016). Secrecy outage of a simultaneous wireless information and power transfer cognitive radio system. IEEE Communications Letters, 5(3), 288–291.

    Article  Google Scholar 

  9. Raghuwanshi, S., Maji, P., Roy, S. D., & Kundu, S. (2016) Secrecy performance of a dual hop cognitive relay network with an energy harvesting relay. In Proceedings of IEEE ICACCI, Jaipur, India (vol. 21–24, pp. 1622–1627).

  10. Shah, H. A., & Koo, I. (2018). A novel physical layer security scheme in OFDM-based cognitive radio networks. IEEE Access, 6, 29486–29498.

    Article  Google Scholar 

  11. Sibomana, L., Tran, H., & Zepernick, H. J. (2015). On physical layer security for cognitive radio networks with primary user interference. In Proceedings of IEEE MILCOM, Tampa, FL (vol. 26–28, pp. 281–286).

  12. Mou, W., Yang, W., Xu, X., Li, X., & Cai, Y. (2016) Secure transmission in spectrum-sharing cognitive networks with wireless power transfer. In Proceedings of IEEE WCSP, Yangzhou, Jiangsu, China (vol. 13–15, pp. 1–5).

  13. Ho-Van, K., & Do-Dac, T. (2018). Impact of primary interference on secrecy performance of physical layer security in cognitive radio networks. Wireless Personal Communications, 100(3), 1099–1127.

    Article  Google Scholar 

  14. Khuong, H. V., Thiem, D. D., Ngoc, P. T. D., Tuan, N. T., Son, P. N., & Son, V. Q. (2017) Security performance analysis of underlay cognitive radio systems under interference from primary network and channel information inaccuracy. In Proceedings of IEEE ATC, Quy Nhon, Vietnam (vol. 18–20, pp. 108–113).

  15. Lei, H., Gao, C., Ansari, I., Guo, Y., Zou, Y., Pan, G., et al. (2017). Secrecy outage performance of transmit antenna selection for MIMO underlay cognitive radio systems over Nakagami-\(m\) channels. IEEE Transactions on Vehicular Technology, 66(3), 2237–2250.

    Article  Google Scholar 

  16. Pei, Y., Liang, Y., Teh, K., & Li, K. (2010). Secure communication over MISO cognitive radio channels. IEEE Transactions on Wireless Communications, 9(4), 1494–1502.

    Article  Google Scholar 

  17. Yang, L., Jiang, H., Vorobyov, S., Chen, J., & Hailin, Z. (2016). Secure communications in underlay cognitive radio networks: User scheduling and performance analysis. IEEE Communications Letters, 20(6), 1191–1194.

    Article  Google Scholar 

  18. Yulong, Z., Xuelong, L., & Ying-Chang, L. (2014). Secrecy outage and diversity analysis of cognitive radio systems. IEEE JSAC, 32(11), 2222–2236.

    Google Scholar 

  19. Hui, Z., Hequn, L., Yaping, L., Chaoqing, T., & Gaofeng, P. (2015) Physical layer security of maximal ratio combining in underlay cognitive radio unit over Rayleigh fading channels. In Proceedings of IEEE ICCSN, Chengdu, China (Vol. 6–7, pp. 201–205).

  20. Xu, X., He, B., Yang, W., Zhou, X., & Cai, Y. (2016). Secure transmission design for cognitive radio networks With Poisson distributed eavesdroppers. IEEE Transactions on Information Forensics and Security, 11(2), 373–387.

    Article  Google Scholar 

  21. Wenli, L., Li, G., Tianyu, K., Jianwei, Z., & Jiaru, L. (2015) Secure cognitive radio system with cooperative secondary networks. In Proceedings of IEEE ICT, Sydney, Australia (vol. 27–29, pp. 6–10).

  22. Elkashlan, M., Wang, L., Duong, T. Q., Karagiannidis, G. K., & Nallanathan, A. (2015). On the security of cognitive radio networks. IEEE Transactions on Vehicular Technology, 64, 3790–3795.

    Article  Google Scholar 

  23. Lei, H., Zhang, H., Ansari, I. S., Gao, C., Guo, Y., Pan, G., et al. (2016). Secrecy outage performance for SIMO underlay cognitive radio systems with generalized selection combining over Nakagami-\(m\) channels. IEEE Transactions on Vehicular Technology, 65(12), 10126–10132.

    Article  Google Scholar 

  24. Pei, Y., Liang, Y., Teh, K., & Li, K. (2011). Secure communication in multiantenna cognitive radio networks with imperfect channel state information. IEEE Transactions on Signal Processing, 59(4), 1683–1693.

    Article  MathSciNet  Google Scholar 

  25. Fang, B., Qian, Z., Shao, W., & Zhong, W. (2016). Precoding and artificial noise design for cognitive MIMOME wiretap channels. IEEE Transactions on Vehicular Technology, 65(8), 6753–6758.

    Article  Google Scholar 

  26. Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series and products (6th ed.). San Diego: Academic.

    MATH  Google Scholar 

  27. Zou, Y., Wang, X., & Shen, W. (2013). Physical-layer security with multiuser scheduling in cognitive radio networks. IEEE Transactions on Communications, 61(12), 5103–5113.

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National University - Ho Chi Minh City (VNU-HCM) under grant number B2019-20-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khuong Ho-Van.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do-Dac, T., Ho-Van, K. Spectrum Sharing Paradigm Under Primary Interference and Nakagami-m Fading: Security Analysis. Wireless Pers Commun 111, 1607–1623 (2020). https://doi.org/10.1007/s11277-019-06943-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06943-5

Keywords

Navigation