Skip to main content
Log in

A Novel Video Coding Framework with Tensor Representation for Efficient Video Streaming

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Video compression is one among the pre-processes in video streaming. While capturing moving objects with moving cameras, more amount of redundant data is recorded along with dynamic change. In this paper, this change is identified using various geometric transformations. To register all these dynamic relations with minimal storage, tensor representation is used. The amount of similarity between the frames is measured using canonical correlation analysis (CCA). The key frames are identified by comparing the canonical auto-correlation analysis score of the candidate key frame with CCA score of other frames. In this method, coded video is represented using tensor which consists of intra-coded key frame, a vector of P frame identifiers, transformation of each variable sized block and information fusion that has three levels of abstractions: measurements, characteristics and decisions that combine all these factors into a single entity. Each dimension can have variable sizes which facilitates storing all characteristics without missing any information. In this paper, the proposed video compression method is applied to under-water videos that have more redundancy as both the camera and the underwater species are in motion. This method is compared with H.264, H.265 and some recent compression methods. Metrics like Peak Signal to Noise Ratio and compression ratio for various bit rates are used to evaluate the performance. From the results obtained, it is obvious that the proposed method performs compression with a high compression ratio, and the loss is comparatively less.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Du, X., Li, H., & Ahalt, S. C. (2002, August 2). Content-based image and video compression. In Proceedings of the SPIE 4727, algorithms for synthetic aperture radar imagery IX (p. 299). https://doi.org/10.1117/12.478687.

  2. Zhai, F., Eisenberg, Y., & Katsaggelos, A. K. (2005). Joint source-channel coding for video communications. In Handbook of image and video processing (pp. 1065–1082). Elsevier. https://doi.org/10.1016/b978-012119792-6/50124-8.

    Chapter  Google Scholar 

  3. Zukoski, M. J., Boult, T., & Iyriboz, T. (2006). A novel approach to medical image compression. International Journal of Bioinformatics Research and Applications,2(1), 89–103.

    Article  Google Scholar 

  4. Maleh, R., Boyle, F. A., Deignan, P. B., & Yancey, J. W. (2011, May 25). Interactive video compression for remote sensing. In Proceedings of the SPIE 8020, airborne intelligence, surveillance, reconnaissance (ISR) systems and applications VIII, 80200T. https://doi.org/10.1117/12.886426.

  5. Cottour, A., Alfalou, A., & Hamam, H. (2008). Optical video image compression: A multiplexing method based on the spectral fusion of information. In 2008 3rd international conference on information and communication technologies: From theory to applications, Damascus, 2008 (pp. 1–6).

  6. Marpe, D., et al. (2010). Video compression using nested quadtree structures, leaf merging, and improved techniques for motion representation and entropy coding. IEEE Transactions on Circuits and Systems for Video Technology,20(12), 1676–1687.

    Article  Google Scholar 

  7. Jun, J., Lee, S., He, Z., Lee, M., & Jang, E. S. (2007). Adaptive key frame selection for efficient video coding. In D. Mery & L. Rueda (Eds.), Proceedings of the 2nd Pacific Rim conference on advances in image and video technology (PSIVT’07) (pp. 853–866). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  8. Cooper, M., & Foote, J. (2005). Discriminative techniques for keyframe selection. In 2005 IEEE International conference on multimedia and expo (pp. 4–7).

  9. Guan, G., Wang, Z., Lu, S., Deng, J. D., & Feng, D. D. (2003). Keypoint-based keyframe selection. IEEE Transactions on Circuits and Systems for Video Technology,23(4), 729–734.

    Article  Google Scholar 

  10. Kiani, V., & Pourreza, H. R. (2012). An effective slow-motion detection approach for compressed soccer videos. ISRN Machine Vision,2012, Article ID 959508.

    Article  Google Scholar 

  11. Ugur, K., et al. (2013). Motion compensated prediction and interpolation filter design in H.265/HEVC. IEEE Journal of Selected Topics in Signal Processing,7(6), 946–956.

    Article  Google Scholar 

  12. Lazar, D., & Averbuch, A. (2001). Wavelet-based video coder via bit allocation. IEEE Transactions on Circuits and Systems for Video Technology,11(7), 815–832.

    Article  Google Scholar 

  13. Castanedo, F. (2013). A review of data fusion techniques. The Scientific World Journal,2013, Article ID 704504. https://doi.org/10.1155/2013/704504.

    Article  Google Scholar 

  14. Khaleghi, B., Khamis, A., Karray, F. O., & Razavi, S. N. (2013). Corrigendum to ‘Multisensor data fusion: A review of the state-of-the-art’ [Information Fusion 14 (1) (2013) 28–44].

  15. Wang, Z., & Vemuri, B. C. (2005). DTI segmentation using an information theoretic tensor dissimilarity measure. IEEE Transaction on Medical Imaging,24(10), 1267–1277.

    Article  Google Scholar 

  16. Jones, D. K. (2008). Tractography gone wild: Probabilistic fibre tracking using the wild bootstrap with diffusion tensor MRI. IEEE Transactions on Medical Imaging,27(9), 1268–1274.

    Article  Google Scholar 

  17. Techavipoo, U., Chen, Q., Varghese, T., & Zagzebski, J. A. (2004). Estimation of displacement vectors and strain tensors in elastography using angular insonifications. IEEE Transactions on Medical Imaging,23(12), 1479–1489.

    Article  Google Scholar 

  18. Cammoun, L., Castano-Moraga, C. A., Munoz-Moreno, E., Sosa-Cabrera, D., Acar, B., Rodriguez-Florido, M. A., et al. (2009). A review of tensors and tensor signal processing. In Tensors in image processing and computer vision (pp. 1–32). Springer.

  19. Zhou, B., Zhang, F., & Peng, L. (2013). Compact representation for dynamic texture video coding using tensor method. IEEE Transactions on Circuits and Systems for Video Technology,23(2), 280–288.

    Article  Google Scholar 

  20. Xiong, H., Xu, Y., Zheng, Y. F., & Chen, C. W. (2011). Priority belief propagation-based inpainting prediction with tensor voting projected structure in video compression. IEEE Transactions on Circuits and Systems for Video Technology,21(8), 1115–1129.

    Article  Google Scholar 

  21. Mahfoodh, A. T., & Radha, H. (2013). Tensor video coding. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 1724–1728).

  22. Hwang, C., Zhuang, S. S., & Lai, S.-H. (2007). Efficient intra mode selection using image structure tensor for H.264/AVC. IEEE International Conference on Image Processing,5, V289–V292.

    Google Scholar 

  23. Pan, F., Lin, X., Rahardja, S., Lim, K. P., Li, Z. G., Wu, D., et al. (2005). Fast mode decision algorithm for intraprediction in H.264/AVC video coding. IEEE Transaction on Circuits Systems for Video Technology,15(7), 813–822.

    Article  Google Scholar 

  24. Ding, C., Huang, H., & Luo, D. (2008). Tensor reduction error analysis—Applications to video compression and classification. In IEEE conference on computer vision and pattern recognition (pp. 1–8).

  25. Izadinia, H., Saleemi, I., & Shah, M. (2013). Multimodal analysis for identification and segmentation of moving-sounding objects. IEEE Transactions on Multimedia,15(2), 378–390. https://doi.org/10.1109/TMM.2012.2228476.

    Article  Google Scholar 

  26. Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential data compression. IEEE Transaction on Information Theory,23(3), 337–343.

    Article  MathSciNet  Google Scholar 

  27. Yu, G., Sapiro, G., & Mallat, S. (2012). Solving inverse problems with piecewise linear estimators: From Gaussian mixture models to structured sparsity. IEEE Transactions on Image Processing,21(5), 2481–2499. https://doi.org/10.1109/TIP.2011.2176743.

    Article  MathSciNet  MATH  Google Scholar 

  28. Jain, J. R., & Jain, A. K. (1981). Displacement measurement and its application in interframe image coding. IEEE Transactions on Communications,COM-29(12), 1799–1808.

    Article  Google Scholar 

  29. Özenli, D. (2016). A comparative analysis between dirac, h.264 and hevc video encoders at variable bit rates. IU-Journal of Electrical & Electronics Engineering,16(1), 2017–2020.

    Google Scholar 

  30. Dolly, D. R. J., Bala, G. J., & Peter, J. D. (2017). Performance enhanced spatial video compression using global affine frame reconstruction. Journal of Computational Science,18, 1–11. https://doi.org/10.1016/j.jocs.2016.11.003.

    Article  Google Scholar 

  31. Chakraborty, S., Paul, M., Murshed, M., & Ali, M. (2017). Adaptive weighted non-parametric background model for efficient video coding. Neurocomputing,226(C), 35–45. https://doi.org/10.1016/j.neucom.2016.11.016.

    Article  Google Scholar 

  32. Glaister, J., Chan, C., Frankovich, M., Tang, A., & Wong, A. (2011). Hybrid video compression using selective keyframe identification and patch-based super-resolution. In 2011 IEEE international symposium on multimedia, Dana point CA, 2011 (pp. 105–110).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suganya Athisayamani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athisayamani, S., Dejey, D. A Novel Video Coding Framework with Tensor Representation for Efficient Video Streaming. Wireless Pers Commun 109, 2699–2717 (2019). https://doi.org/10.1007/s11277-019-06704-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06704-4

Keywords

Navigation