Skip to main content
Log in

Hybrid Fractal Antenna Using Meander and Minkowski Curves for Wireless Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper describes a novel design of Minkowski and Meander curves based hybrid fractal antenna for mobile devices used for communication in delay tolerant networks, wireless sensor networks and mobile adhoc networks. Meander curve improves the impedance bandwidth. Minkowski fractal curve gives its contribution to make antenna multiband. The proposed antenna resonates at five frequencies 1.98, 5.94, 10.61, 12.73, 14.85 GHz. Prior to fabrication, better performance parameters such as return loss, radiation pattern, gain, current distribution, impedance, VSWR are achieved. The maximum bandwidth 2.83 GHz and gain 9.0 dB at 2.4 GHz are achieved. The proposed antenna can be used for various applications like Bluetooth, Wi-Fi, Wi-Max, Wi-Bro, AWS, GPS, S-DMB, WLAN 802.11b/g and DTH services etc. Simulated and measured results are compared and are found in agreement with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Peruani, F., Maiti, A., Sadhu, S., Chaté, H., Choudhury, R. R., & Ganguly, N. (2010). Modeling broadcasting using omnidirectional and directional antenna in delay tolerant networks as an epidemic dynamics. IEEE Journal on Selected Areas in Communications,28(4), 524–531.

    Article  Google Scholar 

  2. Navda, V., Subramanian, A. P., Dhanasekaran, K., Timm-Giel, A., & Das, S. (2007). MobiSteer: Using steerable beam directional antenna for vehicular network access. In Proceedings of the 5th international conference on mobile systems, applications and services (pp. 192-205). ACM.

  3. Godara, L. C. (1997). Applications of antenna arrays to mobile communications. I. Performance improvement, feasibility, and system considerations. Proceedings of the IEEE,85(7), 1031–1060.

    Article  Google Scholar 

  4. Chakraborty, U., Chatterjee, S., Chowdhury, S. K., & Sarkar, P. P. (2011). A compact microstrip patch antenna for wireless communication. Progress In Electromagnetics Research C,18, 211–220.

    Article  Google Scholar 

  5. Kim, H. B., Hwang, K. C., & Park, Y. B. (2010). Compact stub loaded meander line antenna for wireless USB dongle devices. Microwave and Technology Letters,52(10), 2279–2282.

    Article  Google Scholar 

  6. Bhatt, S., Mankodi, P., Desai, A., & Patel, R. (2017). Analysis of ultra wideband fractal antenna designs and their applications for wireless communication: A survey. In International conference on inventive system and control (ICISC) (pp. 1–6). IEEE.

  7. Liu, W. C., & Chen, Y. L. (2011). Compact strip-monopole antenna for WLAN band USB dongle application. Electronics Letters, 47(8), 479–480.

    Article  Google Scholar 

  8. Karli, R., & Ammor, H. (2013). A simple and original design of multiband microstrip patch antenna for wireless communication. International Journal of microwaves Applications,2(2), 41–44.

    Google Scholar 

  9. Lee, S. H., Park, J. K., & Lee, J. N. (2005). A novel CPW-fed ultra wide band antenna design. Microwave and Technology Letters,44(5), 393–396.

    Article  Google Scholar 

  10. Jeong, S. J., & Hwang, K. C. (2010). Novel shorted meander line USB dongle antenna with a compact ground plane. ETRI Journal,32(4), 610–613.

    Article  Google Scholar 

  11. Salim, A. J., & Ali, J. K. (2011). Design of Internal dual band printed monopole antenna based on peano type fractal geometry for WLAN USB dongle. In PIERS proceedings (pp. 1268–1272) Suzhou.

  12. Balanis, C. A. (1997). Antenna theory: Analysis and design (2nd ed.). London: Wiley.

    Google Scholar 

  13. Puente, C., Romeu, J., Bartolemi, R., & Pous, R. (1996). Perturbation of the Sierpinski antenna to allocate operating bands. Electronics Letters,32(24), 2186–2188.

    Article  Google Scholar 

  14. Sivia, J. S., Kaur, G., & Sarao, A. K. (2017). A modified sierpinski carpet fractal antenna for multiband application. Wireless Personal Communication,95(4), 4269–4279.

    Article  Google Scholar 

  15. Jamil, A., Yusoft, M. Z., Yahya, N., & Zakariya, M. A. (2011). A compact multiband hybrid Meander–Koch fractal antenna for WLAN USB dongle. In IEEE conference on open systems (ICOS) (pp. 290–293) September 25–28, Langkawi, Malaysia.

  16. Lizzi, L., & Oliveri, G. (2010). Hybrid design of a fractal shaped GSM/UMTS antenna. Journal Electromagnetic Waves and Application,24(5), 707–719.

    Article  Google Scholar 

  17. Azaro, R., Debiasi, L., Zeni, E., Benedetti, M., Rocca, P., & Massa, A. (2009). A hybrid prefractal three band antenna for multistandard mobile wireless applications. IEEE Antenna and Wireless Propagation Letters,8, 905–908.

    Article  Google Scholar 

  18. Choukiker, Y. K., Sharma, S. K., & Behera, S. K. (2014). Hybrid fractal shape planar monopole antenna covering multiband wireless communications with MIMO implementation for handheld mobile devices. IEEE Transactions on Antenna and Propagation,62(3), 1483–1487.

    Article  Google Scholar 

  19. Ghosh, S. (2014). Design of multiband Meander line antennas and their performance analysis. International Journal of Emerging Technology and Advacned Engineering, 4(1), 566–572.

    Google Scholar 

  20. Kim, L. M., Yook, J. G., Song, W. Y., Yoon, Y. J., Park, J. Y., & Park, H. K. (2001). Compact Meander type slot antennas. IEEE (pp. 724–727).

  21. Misman, D., Salamat, I. A., Abdulkadir, M. F., Che Rose, M. R., Mohd Shah, M. S. R., Abd, M. Z. A., & Husain. M. N. (2014). The effect of conductor line to meander line antenna design. In Proceedings of international conference on Antennas and Propagation (pp. 441–444). IEEE

  22. Ambhore, V. B., & Dhande, A. P. (2012). Properties and design of single element meander line antenna. International Journal of Advanced Research in Computer Science,3(3), 845–848.

    Google Scholar 

  23. Khaleghi, A. (2006). Dual band Meander line antenna for wireless LAN communication. IEEE Transactions on Antennas and Propagation, 55(3), 1004–1009.

    Article  Google Scholar 

  24. Huang, C. W. P., Elsherbeni, A. Z., Chen, J. J., & Smith, C. E. (1999). FDTD characterization of meander line antennas for RF wireless communications. Progress in Electromagmetics Research (PIER),24, 185–199.

    Article  Google Scholar 

  25. Warnagiris, T. J., & Mindardo, T. J. (1998). Performance of a meandered line as an electrically small transmitting antenna. IEEE Transactions on Antenna and Propagation,46(12), 1797–1801.

    Article  Google Scholar 

  26. Lee, K. F., Luk, K. M., & Mak, K. M. (2010). Dual and triple band patch antennas fed by meandering probe. Microwaave and Optical Technology Letters,52(7), 1498–1504.

    Article  Google Scholar 

  27. Misman, D., Husain, M. N., Salamat, I. A., Abdul Kadir, M. F., Che Rose, M. R., Mohd Shah, M. S. R., & Abd, M. Z. A. (2008). The study of different impedence meander line for microstrip antenna design. In Proceeding of IEEE conference (pp. 117–120).

  28. Shi, Y., Qi, K., & Liang, C. H. (2010). A miniaturized design of 2.45 GHz RFID tag antenna. Microwave and Optical Technology Letters,57(8), 905–1908.

    Google Scholar 

  29. Allen, C. M., Elsherbeni, A. Z., Smith, C. E., Huang, C. W. P., & Lee, K. F. (2003). Tapered meander slot antenna for dual band personal wireless communication systems. Microwave and Optical Technology Letters,36(5), 381–385.

    Article  Google Scholar 

  30. Elsherbeni, A. Z., Smith, C. E., & Huang, C. W. P. (2003). Wideband Meander line antenna for wireless communication systems, pp. 17–20.

  31. Ammann, M. J. (2001). Control of the impedance bandwidth of wideband planar monopole antennas using a bevelling technique. Microwave and Technology Letters,30(4), 229–232.

    Article  Google Scholar 

  32. Chaimool, S., Chokchai, C., & Akkaraekhalin, P. (2012). Multiband loaded fractal loop monopole antenna for USB dongle applications. Electronics Letters, 48(23), 1446–1447.

    Article  Google Scholar 

  33. Comisso, M. (2008). Theoretical and numerical analysis of the resonant behaviour of the minkowski fractal dipole antenna. IET Microwave Antennas Propagation,3(3), 456–464.

    Article  Google Scholar 

  34. Abdullah, N., Shire, A. M., Ali, M. A., & Mohd, E. (2015). Design and analysis of Minkowski fractal antenna. Journal of Engineering and Applied Sciences,10(19), 8736–8739.

    Google Scholar 

  35. Lee, E. C., Soh, P. J., Hashim, N. B. M., Vandenbosch, G. A. E., Volski, V., Adam, I., Mirza, H., & Aziz, M. Z. A. A. Design and fabrication of a flexible Minkowski fractal antenna for VHF applications. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP) (pp. 521–524). IEEE

  36. Maagt, P. D., Gonzalo, R., Viannis, Y. C., Vardaxoglou, C., & Baracco, J. M. (2003). Electromagnatic bandgap antenna and components for microwave and (sub) millimeter wave applications. IEEE Transactions on Antennas and Propagation,51(10), 2667–2676.

    Article  Google Scholar 

  37. Brown, E. R., Parker, C. D., & Yablonovitch, E. (1993). Radiation properties of a planar antenna on a photonic crystal substrate. Journal of the Optical Society of America B,10(2), 405–407.

    Article  Google Scholar 

  38. Lin, C. C., Kuo, S. W., & Chuang, H. R. (2005). A 2.4 GHz printed meander line antenna for USB WLAN with notebook PC housing. IEEE Microwave and Wireless Components Letters,15(9), 546–548.

    Article  Google Scholar 

  39. Luo, Q., Pereira, J. R., & Salgodo, H. M. (2009). Fractal monopole antenna for WLAN USB dongle. In Loughborough antennas & propagation conference (pp. 45–247).

  40. Yu, Y., & Choi, J. (2010). A compact modified monopole type internal antenna for wireless USB dongle application. Microwave and Optical Technology Letters,52(1), 198–201.

    Article  Google Scholar 

  41. Singh, A., Sivia, J. S., & Kaur, K. (2017). Multiband hybrid microstrip patch antenna for L, S and C band applications. International Journal of Computer Science and Information Security, 15(2), 172–179.

    Google Scholar 

  42. Bangi, I. S., Sivia, J. S., & Kaureana, G. S. (2015). Minkowski and circular curves based wide band microstrip fractal antenna. International Journal of Computer Science and Information Security,15(6), 52–62.

    Google Scholar 

  43. Kaur, K., & Sivia, J. S. (2017). A compact hybrid multiband antenna for wireless application. Wireless Personal Communication, 97(4), 5917–5927.

    Article  Google Scholar 

  44. Choukiker, Y. K., & Behera, S. K. (2012). Design of wideband fractal antenna with combination of fractal geometries. In Information, communication and signal processing (ICICS), April 2012.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Jindal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jindal, S., Sivia, J.S. & Bindra, H.S. Hybrid Fractal Antenna Using Meander and Minkowski Curves for Wireless Applications. Wireless Pers Commun 109, 1471–1490 (2019). https://doi.org/10.1007/s11277-019-06622-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06622-5

Keywords

Navigation