Skip to main content
Log in

Development of a Robust Carrier Synchronizer for High Dynamic and Low Signal to Noise Ratio Signals in GPS Receivers

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a robust carrier recovery loop for high dynamic and weak signals in GPS receivers is proposed. To achieve optimal tracking performance at synchronization loops, different methods are investigated. Since phase jitter sources are identified at the receiver, suitable controller coefficients are calculated and used in carrier and timing recovery loops. This improvement induces higher speed and lower variance of jitter in acquisition and tracking modes, respectively. Furthermore, this simple design can obviate the need of large digital filters or complex circuits such as wavelet de-noising filters in the loop. To extend the linear range of the phase estimator, phase unwrapper unit is used which can improve loop tracking ability and resolve Kalman filter difficulties. To compensate the cycle-slip phenomenon, a novel recursive algorithm is introduced which causes better performance for low CNR signals and high dynamic environments. Simulation results show the effectiveness of the proposed architecture for different Doppler rates and CNRs. Moreover, the results indicate good matching between fixed-point FPGA implementation and floating-point simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kaplan, E. D., & Hegarty, C. J. (Eds.). (1996). Understanding GPS principles and applications (2nd ed.). Norwood: Artech House.

    Google Scholar 

  2. Mengali, U., & D’Andrea, A. N. (1997). Synchronization techniques for digital receivers. New York: Plenum Press.

    Book  Google Scholar 

  3. Rice, M. (2009). Digital communications: A discrete time approach. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  4. Savvopoulos, P., & Antonakopoulos, T. (2014). A new performance metric for M-APSK receivers. International Journal of Electronics and Communications (AEU), 68(11), 1136–1144.

    Article  Google Scholar 

  5. Zhou, X. (2014). Efficient clock and carrier recovery algorithms for single carrier coherent optical systems. IEEE Signal Processing Magazine, 31(2), 35–45.

    Article  Google Scholar 

  6. Mansuri, M., & Yang, C. (2002). Jitter optimization based on phase-locked loop design parameters. IEEE Journal of Solid-State Circuits, 37(11), 1375–1382.

    Article  Google Scholar 

  7. Sayadi, M., & Farshidi, E. (2016). A fast locked and low phase noise all-digital phase locked loop based on model predictive control. Analog Integrated Circuits and Signal Processing, 88, 401–414.

    Article  Google Scholar 

  8. Curran, J. T., Lachapelle, G., & Murphy, C. C. (2012). Digital GNSS PLL design conditioned on thermal and oscillator phase noise. IEEE Transactions on Aerospace and Electronic Systems, 48(1), 180–196.

    Article  Google Scholar 

  9. Spalvieri, A., & Magarini, M. (2008). Wieners analysis of the discrete-time phase-locked loop with loop delay. IEEE Transactions on Circuits and Systems - II, 55, 596–600.

    Article  Google Scholar 

  10. Won, J. H. (2014). A novel adaptive digital phase-lock-loop for modern digital GNSS receivers. IEEE Communications Letters, 18(1), 46–49.

    Article  Google Scholar 

  11. Lopez-Salcedo, J. A., Del Peral-Rosado, J. A., & Seco-Granados, G. (2014). Survey on robust carrier tracking techniques. IEEE Communications Surveys & Tutorials, 16(2), 670–688.

    Article  Google Scholar 

  12. Yan, K., Ziedan, N. I., Zhang, H., Guo, W., Niu, X., & Liu, J. (2014). Weak GPS signal tracking using FFT discriminator in open loop receiver. GPS Solution Journal, 20, 225–237.

    Article  Google Scholar 

  13. Tahir, M., Presti, L. L., & Fantino, M. (2012). A novel quasi-open loop architecture for GNSS carrier recovery systems. International Journal of Navigation and Observation, 2012, 324858.

    Article  Google Scholar 

  14. Juang, J. C., & Chen, Y. H. (2009). Phase/frequency tracking in a GNSS software receiver. IEEE Journal of Selected Topics in Signal Processing, 3(4), 651–660.

    Article  Google Scholar 

  15. Kim, N. G., & Ha, I. J. (1999). Design of ADPLL for both large lock-in range and good tracking performance. IEEE Transactions on Circuits and Systems - II, 46, 1192–1204.

    Article  Google Scholar 

  16. Kumm, M., Klingbeil, H., & Zipf, P. (2010). An FPGA-based linear all-digital phase-locked loop. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 2487–2497.

    Article  MathSciNet  Google Scholar 

  17. Roncagliolo, P. A., & Garcia, J. G. (2007). High dynamics and false lock resistant GNSS carrier tracking loops. In International technical meeting of the satellite division of the Institute of Navigation (ION GNSS), September 2007.

  18. Eynard, G., & Laot, C. (2008). Extended linear phase detector characteristic of software PLL. In 3rd International symposium on communications, control and signal proceedings (ISCCSP) (pp. 62–67).

  19. Roche, S., Bidon, S., Besson, O., Monnerat, M., Ries, L., & Thevenon, P. (2012). PLL unwrapping structures using polynomial prediction algorithm for noisy carrier phase tracking. In Proceedings of the 25th international technical meeting of the Satellite Division of the Institute of Navigation (ION GNSS), Nashville, TN, September 2012.

  20. Ales, F., Mandel, O., Gath, P., Johann, U., & Braxmaier, C. (2015). A phasemeter concept for space applications that integrates an autonomous signal acquisition stage based on the discrete wavelet transform. Review of Scientific Instruments, 86, 084502.

    Article  Google Scholar 

  21. Lian, P., Lachapelle, G., & Ma, C. (2005). Improving tracking performance of PLL in high dynamics applications. In ION NTM (pp.1042–1052).

  22. Lim, K., Park, C. H., Kim, D. S., & Kim, B. (2000). A low-noise phase-locked loop design by loop bandwidth optimization. IEEE Journal of Solid-State Circuits, 35(6), 807–815.

    Article  Google Scholar 

  23. Won, J. H. (2013). A tuning method based on signal-to-noise power ratio for adaptive PLL and its relationship with equivalent noise bandwidth. IEEE Communications Letters, 17(2), 393–396.

    Article  Google Scholar 

  24. Zhang, L., Morton, Y., van Graas, F., & Beach, T. (2010). Characterization of GNSS signal parameters under ionosphere scintillation conditions using software-based tracking algorithms. In Proceedings IEEE Position Location and Navigation Symposium (PLANS), May 2010 (pp. 264–275).

  25. Lin, W. T., & Chung Chang, D. (2007). Adaptive carrier synchronization using decision-aided Kalman filtering algorithms. IEEE Transactions on Consumer Electronics, 53(4), 1260–1267.

    Article  Google Scholar 

  26. Namgoong, W. (2010). Observer-controller digital PLL. IEEE Transactions on Circuits and Systems-I: Regular Paper, 57(3), 631–641.

    Article  MathSciNet  Google Scholar 

  27. Vilà-Valls, J., Closas, P., Fernández-Prades, C., López-Salcedo, J. A., & Seco-Granados, G. (2015). Adaptive GNSS carrier tracking under ionospheric scintillation: Estimation vs. mitigation. IEEE Communications Letters, 19(6), 961–964.

    Article  Google Scholar 

  28. Chatterjee, B., Biswas, B. N., & Ray, S. (2014). A novel DSP-based PFC-DPLL with fuzzy controlled acquisition aid to improve acquisition performance and noise immunity. International Journal of Communication Systems, 28, 2051–2066.

    Article  Google Scholar 

  29. NovAtel Inc. (1998). Millenium GPSCard™ command descriptions manual, Calgary, AB, Canada.

  30. Irsigler, M., & Eissfeller, B. (2002). PLL tracking performance in presence of oscillator phase noise. GPS Solutions, 5(4), 45–54.

    Article  Google Scholar 

  31. WenJun, F., JingShan, J., ShuanRong, W., & Luan, L. (2006). Design and performance evaluation of carrier lock detection in digital QPSK receiver. In IEEE ICC.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ayat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayat, M., Kamali, A. & Mirzakuchaki, S. Development of a Robust Carrier Synchronizer for High Dynamic and Low Signal to Noise Ratio Signals in GPS Receivers. Wireless Pers Commun 108, 1243–1259 (2019). https://doi.org/10.1007/s11277-019-06467-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06467-y

Keywords

Navigation