A Biometric-Based Authenticated Key Agreement Protocol for User-to-User Communications in Mobile Satellite Networks

  • Ngoc-Tu Nguyen
  • Chin-Chen ChangEmail author


Satellite systems have been integrating into worldwide networks to improve the quality of services, including mobility, reliability, and coverage. Such systems offer tremendous advantages to end users at any times, places, and circumstances, but raise significant security risks due to the inherent weaknesses of data transmission via radio signals. The existing studies only focus on the connections between users and the network control center while end-to-end communications with space segments have not yet fully considered. In this study, we propose a user-to-user anonymous authenticated key agreement protocol for mobile satellite communications. Multiple factors, including a user’s biometric, password, smart card, secret identity, and a public identity are utilized to strengthen system security. The scheme also employs the biohashing code and Hamming distance to encode sensitive data and to verify user’s inputs. Short-term tokens are exploited to facilitate users to authenticate and negotiate session keys directly with other end users and application servers. Hence, not only can our scheme withstand all known attacks, but it also provides the systems with several desired properties, including user’s access control, revocations, biometric error resistance, and long-term secret updates.


Authenticated key agreement Elliptic curve cryptography User-to-user mobile communications Satellite Biometric Smart card Gap problems Random oracle model 



  1. 1.
    Akyildiz, I. F., Mohanty, S., & Xie, J. (2005). A ubiquitous mobile communication architecture for next-generation heterogeneous wireless systems. IEEE Communications Magazine, 43(6), S29–S36.CrossRefGoogle Scholar
  2. 2.
    Kota, S. L. (2005). Broadband satellite networks: trends and challenges. In Wireless communications and networking conference, 2005 IEEE, vol. 3, (pp. 1472–1478). IEEE.Google Scholar
  3. 3.
    Evans, J. (1997). Satellite systems for personal communications. IEEE Antennas and Propagation Magazine, 39(3), 7–20.CrossRefGoogle Scholar
  4. 4.
    Sadek, M., & Aissa, S. (2012). Personal satellite communication: Technologies and challenges. IEEE Wireless Communications, 19(6), 28–35.CrossRefGoogle Scholar
  5. 5.
    Roy-Chowdhury, A., Baras, J. S., Hadjitheodosiou, M., & Papademetriou, S. (2005). Security issues in hybrid networks with a satellite component. IEEE Wireless Communications, 12(6), 50–61.CrossRefGoogle Scholar
  6. 6.
    Cruickshank, H. (1996). A security system for satellite networks. In Fifth international conference on satellite systems for mobile communications and navigation, (pp. 187–190). IET.Google Scholar
  7. 7.
    Hwang, M. S., Yang, C. C., & Shiu, C. Y. (2003). An authentication scheme for mobile satellite communication systems. ACM SIGOPS Operating Systems Review, 37(4), 42–47.CrossRefGoogle Scholar
  8. 8.
    Chang, Y. F., & Chang, C. C. (2005). An efficient authentication protocol for mobile satellite communication systems. ACM SIGOPS Operating Systems Review, 39(1), 70–84.CrossRefGoogle Scholar
  9. 9.
    Chen, T. H., Lee, W. B., & Chen, H. B. (2009). A self-verification authentication mechanism for mobile satellite communication systems. Computers and Electrical Engineering, 35(1), 41–48.CrossRefzbMATHGoogle Scholar
  10. 10.
    Lasc, I., Dojen, R., & Coffey, T. (2011). Countering jamming attacks against an authentication and key agreement protocol for mobile satellite communications. Computers and Electrical Engineering, 37(2), 160–168.CrossRefGoogle Scholar
  11. 11.
    Yoon, E. J., Yoo, K. Y., Hong, J. W., Yoon, S. Y., Park, D. I., & Choi, M. J. (2011). An efficient and secure anonymous authentication scheme for mobile satellite communication systems. EURASIP Journal on Wireless Communications and Networking, 2011(1), 86.CrossRefGoogle Scholar
  12. 12.
    Lee, C. C., Li, C. T., & Chang, R. X. (2012). A simple and efficient authentication scheme for mobile satellite communication systems. International Journal of Satellite Communications and Networking, 30(1), 29–38.CrossRefGoogle Scholar
  13. 13.
    Zhang, Y., Chen, J., & Huang, B. (2015). An improved authentication scheme for mobile satellite communication systems. International Journal of Satellite Communications and Networking, 33(2), 135–146.CrossRefGoogle Scholar
  14. 14.
    Beheshtifard, S. (2016). Validation of authentication protocols for mobile satellite systems. International Journal of Advanced Biotechnology and Research, 7, 1517–1521.Google Scholar
  15. 15.
    Liu, Y., Zhang, A., Li, S., Tang, J., & Li, J. (2017). A lightweight authentication scheme based on self-updating strategy for space information network. International Journal of Satellite Communications and Networking, 35(3), 231–248.CrossRefGoogle Scholar
  16. 16.
    Yantao, Z., & Jianfeng, M. (2010). A highly secure identity-based authenticated key-exchange protocol for satellite communication. Journal of Communications and Networks, 12(6), 592–599.CrossRefGoogle Scholar
  17. 17.
    Lin, H. Y. (2016). Efficient dynamic authentication for mobile satellite communication systems without verification table. International Journal of Satellite Communications and Networking, 34(1), 3–10.CrossRefGoogle Scholar
  18. 18.
    Ibrahim, M. H., Kumari, S., Das, A. K., & Odelu, V. (2016). Jamming resistant non-interactive anonymous and unlinkable authentication scheme for mobile satellite networks. Security and Communication Networks, 9(18), 5563–5580.CrossRefGoogle Scholar
  19. 19.
    Zheng, G., Ma, H. T., Cheng, C., & Tu, Y. C. (2012). Design and logical analysis on the access authentication scheme for satellite mobile communication networks. IET Information Security, 6(1), 6–13.CrossRefGoogle Scholar
  20. 20.
    Zhang, Y., Chen, J., & Huang, B. (2014). Security analysis of an authentication and key agreement protocol for satellite communications. International Journal of Communication Systems, 27(12), 4300–4306.CrossRefGoogle Scholar
  21. 21.
    Tsai, J. L., Lo, N. W., & Wu, T. C. (2014). Secure anonymous authentication scheme without verification table for mobile satellite communication systems. International Journal of Satellite Communications and Networking, 32(5), 443–452.CrossRefGoogle Scholar
  22. 22.
    Farash, M. S., & Attari, M. A. (2014). An efficient client–client password-based authentication scheme with provable security. The Journal of Supercomputing, 70(2), 1002–1022.CrossRefGoogle Scholar
  23. 23.
    Heydari, M., Sadough, S. M. S., Farash, M. S., Chaudhry, S. A., & Mahmood, K. (2016). An efficient password-based authenticated key exchange protocol with provable security for mobile client–client networks. Wireless Personal Communications, 88(2), 337–356.CrossRefGoogle Scholar
  24. 24.
    Li, X., Niu, J., Kumari, S., Khan, M. K., Liao, J., & Liang, W. (2015). Design and analysis of a chaotic maps-based three-party authenticated key agreement protocol. Nonlinear Dynamics, 80(3), 1209–1220.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Jiang, Q., Kumar, N., Ma, J., Shen, J., He, D., & Chilamkurti, N. (2017). A privacy-aware two-factor authentication protocol based on elliptic curve cryptography for wireless sensor networks. International Journal of Network Management, 27(3), e1937–n/a.CrossRefGoogle Scholar
  26. 26.
    Jin, A. T. B., Ling, D. N. C., & Goh, A. (2004). Biohashing: Two factor authentication featuring fingerprint data and tokenised random number. Pattern Recognition, 37(11), 2245–2255.CrossRefGoogle Scholar
  27. 27.
    Lumini, A., & Nanni, L. (2007). An improved biohashing for human authentication. Pattern Recognition, 40(3), 1057–1065.CrossRefzbMATHGoogle Scholar
  28. 28.
    Jin, A. T. B., Ling, D. N. C., & Song, O. T. (2004). An efficient fingerprint verification system using integrated wavelet and Fourier–Mellin invariant transform. Image and Vision Computing, 22(6), 503–513.CrossRefGoogle Scholar
  29. 29.
    Yra, P. B., Genna, M., McMahon, S., Kerns, K., Tiede, R., Laird, M., & Cronauer, T. (2010). Next-generation spacecraft command and data handling system based on the RAD750 processor. In Proceedings of the 28th AIAA international communications satellite systems conference.Google Scholar
  30. 30.
    Dolev, D., & Yao, A. (1983). On the security of public key protocols. IEEE Transactions on Information Theory, 29(2), 198–208.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Messerges, T. S., Dabbish, E. A., & Sloan, R. H. (2002). Examining smart-card security under the threat of power analysis attacks. IEEE Transactions on Computers, 51(5), 541–552.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Okamoto, T., & Pointcheval, D. (2001). The gap-problems: A new class of problems for the security of cryptographic schemes. In International workshop on public key cryptography, (pp. 104–118). Berlin: Springer.Google Scholar
  33. 33.
    Mishkovski, I., & Kocarev, L. (2011). Chaos-based public-key cryptography (pp. 27–65). Berlin: Springer.CrossRefzbMATHGoogle Scholar
  34. 34.
    Barker, E., Barker, W., Burr, W., Polk, W., & Smid, M. (2012). Recommendation for key management part 1: General (revision 3). NIST Special Publication, 800(57), 1–147.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Computational Mathematics and Engineering, Institute for Computational ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Information TechnologyTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Department of Information Engineering and Computer ScienceFeng Chia UniversityTaichungTaiwan, ROC

Personalised recommendations