A Novel Energy Harvesting: Cluster Head Rotation Scheme (EH-CHRS) for Green Wireless Sensor Network (GWSN)

  • V. MahimaEmail author
  • A. Chitra


Wireless Sensor Network (WSN) serves as a better solution for remote unmanned monitoring situations. The harvesting capabilities in Green Wireless Sensor Network (GWSN) do not satisfy the real energy demand and it greatly determines the lifetime of the GWSN. The (a) excess harvesting leads energy overflow and (b) meager energy harvesting leads unavailability in monitoring of the event. The energy management favoring continuous monitoring in WSN is the problem addressed in this article. This article concentrates in creating a solution for energy outage and energy overflow problem in GWSN. The residual energy of the buffer and current harvesting rate is considered to create an energy efficient routing algorithm for GWSN. The energy arrival is poisson in nature, the energy harvesting, storing and utilization in the battery is realized as a Double Chain Markov Model. The algorithm proves to be energy efficient and delivers high throughput when compared with Stable Election Protocol (SEP) algorithm. The proposed Energy Harvesting—Cluster Head Rotation Scheme (EH-CHRS) algorithm minimizes the energy overflow and energy outage in the network by optimal Cluster Head (CH) selection and CH rotation method. The algorithm is analyzed with different harvesting rate λ = 1 and 2. The EH-CHRS algorithm also promotes reduced drop packet when compared to the SEP protocol. The algorithm also resist energy hole problem and HOT SPOT problem in the network.


Green Wireless Sensor Network (GWSN) Double Chain Markov Model (DCMM) Energy management Network throughput Energy outage Energy overflow 



  1. 1.
    Tang, Q., Yang, L., Giannakis, G. B., & Qin, T. (2007). Battery power efficiency of PPM and FSK in wireless sensor networks. IEEE Transaction on Wireless Communication, 6(4), 1308–1319.CrossRefGoogle Scholar
  2. 2.
    Michelusi, N., Stamatiou, K., & Zorzi, M. (2013). Transmission policies for energy harvesting sensors with time-correlated energy supply. IEEE Transactions on Communications., 61(7), 2988–3001.CrossRefGoogle Scholar
  3. 3.
    Lee, J. S., & Cheng, W. L. (2012). Fuzzy logic based clustering approach for wireless sensor networks using energy predictions. IEEE Sensors Journal., 12(9), 2891–2897.CrossRefGoogle Scholar
  4. 4.
    Maleki, S., Pandharipande, A., & Leus, G. (2011). Energy-efficient distributed spectrum sensing for cognitive sensor networks. IEEE Sensors J, 11(3), 565–573.CrossRefGoogle Scholar
  5. 5.
    Kanagachidambaresan, G. R., & Chitra, A. (2014). Fail safe fault tolerant mechanism for wireless body sensor network. Wireless Personnel Communications., 78(2), 247–260.Google Scholar
  6. 6.
    Kanagachidambaresan, G. R., & Chitra, A. (2016). TA-FSFT thermal aware fail safe fault tolerant algorithm for wireless body sensor network. Wireless Personal Communication, 90(4), 1935–1950.CrossRefGoogle Scholar
  7. 7.
    Kanagachidambaresan, G. R., & SarmaDhulipala, V. R. (2014). Cardiac care assistance using self configured sensor network—a remote patient monitoring system. Journal of The Institution of Engineers Series B, 95(2), 101–106.CrossRefGoogle Scholar
  8. 8.
    Kanagachidambaresan, G. R., SarmaDhulipala, V. R., Vanusha, D., & Udhaya, M. S. (2011). Matlab based modeling of body sensor network using ZigBee protocol. CIIT, 2011, 773–776.Google Scholar
  9. 9.
    Nuggehalli, P., Srinivasan, V., & Rao, R. R. (2006). Energy efficient transmission scheduling for delay constrained wireless networks. IEEE Transaction on Wireless Communication, 5(3), 531–539.CrossRefGoogle Scholar
  10. 10.
    Rajesh, R., Sharma, V., & Viswanath, P. (2014). Capacity of Gaussian channels with energy harvesting and processing cost. IEEE Transactions on Information Theory, 60(5), 2563–2575.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Du, E., Yang, Q., Shen, Z., & Kwak, K. S. (2017). Distortion minimization in wireless sensor networks with energy harvesting. IEEE Communications Letters, 21(6), 1393–1396.CrossRefGoogle Scholar
  12. 12.
    Zhang, D., Chen, Z., Ren, J., Zhang, N., Awad, M. K., Zhou, H., et al. (2017). Energy-harvesting-aided spectrum sensing and data transmission in heterogeneous cognitive radio sensor network. IEEE Transactions on Vehicular Technology, 66(1), 831–843.CrossRefGoogle Scholar
  13. 13.
    Akhtar, F., & Rehmani, M. H. (2017). Energy harvesting for self-sustainable wireless body area networks. IT Professional, 19(2), 32–40.CrossRefGoogle Scholar
  14. 14.
    Das, K., Zand, P., & Havinga, P. (2017). Industrial wireless monitoring with energy-harvesting devices. IEEE Internet Computing, 21(1), 1089–7801.CrossRefGoogle Scholar
  15. 15.
    Mosavat-Jahromi, H., Maham, B., & Tsiftsis, T. A. (2017). Maximizing spectral efficiency for energy harvesting-aware WBAN. IEEE Journal of Biomedical and Health Informatics, 21(3), 732–742.CrossRefGoogle Scholar
  16. 16.
    Ashraf, M., Shahid, A., Jang, J. W., & Lee, K.-G. (2017). Optimization of the overall success probability of the energy harvesting cognitive wireless sensor networks. IEEE Access, 5, 2169–3536.Google Scholar
  17. 17.
    Ruan, T., Chew, Z. J., & Zhu, M. (2017). Energy-aware approaches for energy harvesting powered wireless sensor nodes. IEEE Sensors Journal, 17(7), 2165–2173.CrossRefGoogle Scholar
  18. 18.
    Kong, H.-B., Wang, P., Niyato, D., & Cheng, Y. (2017). Modeling and analysis of wireless sensor networks with/without energy harvesting using Ginibre point processes. IEEE Transactions on Wireless Communications, 16(6), 3700–3713.CrossRefGoogle Scholar
  19. 19.
    Li, W., Bassi, F., Dardari, D., Kieffer, M., & Pasolini, G. (2016). Defective sensor identication for WSNs involving generic local outlier detection tests. IEEE Transaction Signal Information processing Networks, 2, 29–48.CrossRefGoogle Scholar
  20. 20.
    Flint, I., Lu, X., Privault, N., Niyato, D., & Wang, P. (2015). Performance analysis of ambient RF energy harvesting with repulsive point process modeling. IEEE Transaction on Wireless Communication, 14, 5402–5416.CrossRefGoogle Scholar
  21. 21.
    Sakr, A. H., & Hossain, E. (2014).Analysis of multi-tier uplink cellular networks with energy harvesting and flexible cell association. in Procedding of IEEE Global Communication Conference (Globecom), Austin( pp. 4525–4530).Google Scholar
  22. 22.
    Murthy, C. R. (2009). Power management and data rate maximization in wireless energy harvesting sensors. International Journal of Wireless Information Networks, 16, 102–117.CrossRefGoogle Scholar
  23. 23.
    Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transaction Wireless Communication, 1, 660–670.CrossRefGoogle Scholar
  24. 24.
    Che, Y. L., Duan, L., & Zhang, R. (2015). Spatial throughput maximization of wireless powered communication networks. IEEE Journal on Selected Areas in Communication, 33, 1534–1548.Google Scholar
  25. 25.
    Agarwal, A., & Jagannatham, A. K. (2014). Distributed estimation in homogenous Poisson wireless sensor networks. IEEE Wireless Commun. Letters, 3, 90–93.CrossRefGoogle Scholar
  26. 26.
    Jornet, J. M., & Akyildiz, I. F. (2012). Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the Terahertz band. IEEE Transaction on Nano Technology, 11(3), 570–580.CrossRefGoogle Scholar
  27. 27.
    Michelusi, N., Badia, L., Carli, R., Corradini, L., & Zorzi, M. (2013). Energy management policies for harvesting- based wireless sensor devices with battery degradation. IEEE Transactions on Communications, 61(12), 4934–4947.CrossRefGoogle Scholar
  28. 28.
    Dong, Y., Wang, J., Shim, B., & Kim, D. I. (2016). DEARER: A distance and energy aware routing with energy reservation for energy harvesting wireless sensor networks. IEEE Journal on Selected Areas in Communications, 34(12), 3798–3813.CrossRefGoogle Scholar
  29. 29.
    Michelusi, N., Badia, L., Carli, R., Corradini, L., & Zorzi, M. (2013). Impact of battery degradation on optimal management policies of harvesting based wireless sensor devices. Proceedings IEEE, INFOCOM
  30. 30.
    Faisal, S., Javaid, N., Javaid, A., Khan, M. A., Bouk, S. H., & Khan, Z. A. (2013). Z-SEP: zonal-stable election protocol for wireless sensor networks. Journal of Basic and Applied Scientific Research (JBASR).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ECEVel Tech Rangarajan Dr Sagunthala R&D Institute of Science and TechnologyChennaiIndia
  2. 2.PSG College of TechnologyCoimbatoreIndia
  3. 3.Department of Computer ApplicationsPSG College of TechnologyCoimbatoreIndia

Personalised recommendations