Skip to main content
Log in

JUIndoorLoc: A Ubiquitous Framework for Smartphone-Based Indoor Localization Subject to Context and Device Heterogeneity

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A new era of ubiquitous indoor location awareness is on the horizon especially for context sensing, ambient assisted living and many other smart city applications. Although indoor localization plays a pivotal role in making the environment smarter, it is still very difficult to compare state-of-the-art localization algorithms due to the scarcity of standard databases. Publicly available databases are neither fine-grained nor contain data for different conditions. Received Signal Strength Indicator (RSSI) of Wi-Fi signals vary with indoor environment (open/closed room, presence/absence of user, temperature etc.) and scanning smart hand-held devices. Thus, localization accuracy varies with various environmental conditions and also granularity of location points (cell). Consequently, in this paper, our contribution is two-fold. First, we present a comprehensive indoor localization dataset, subject to different domains-spatial, temporal, context and device. RSSI data has been collected with cell sizes as small as \(1\,{\mathrm{m}}\times 1\,{\mathrm{m}}\) from three floors of a building of our University using an Android application built for this purpose. This multi-floor dataset is available online at https://drive.google.com/open?id=1_z1qhoRIcpineP9AHkfVGCfB2Fd_e-fD. Our experimental results show that maximum of \(71.78\%\) classification accuracy can be achieved for state-of-the-art classifiers when training and testing samples are taken in different environmental conditions and from smartphones having different configurations. Single classifier cannot easily be modified to suit these variations without loosing its generality. So, to overcome these conditional dependencies, our second contribution is to propose a framework for indoor localization, JUIndoorLoc and design an ensemble of condition specific classifiers as part of the framework to take care of context and device heterogeneity. Consequently, this ensemble of condition specific classifiers is implemented and found to predict a location with \(91.74\%\) accuracy (1.87 m) for our dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu, H., Darabi, H., Banerjee, P., & Liu, J. (2007). Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 37(6), 1067–1080.

    Article  Google Scholar 

  2. Gu, Y., Lo, A., & Niemegeers, I. (2009). A survey of indoor positioning systems for wireless personal networks. IEEE Communications Surveys Tutorials, 11(1), 13–32.

    Article  Google Scholar 

  3. He, S., & Chan, S. H. G. (2016). Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Communications Surveys Tutorials, 18(1), 466–490.

    Article  Google Scholar 

  4. Shu, Y., Huang, Y., Zhang, J., Coué, P., Cheng, P., Chen, J., et al. (2016). Gradient-based fingerprinting for indoor localization and tracking. IEEE Transactions on Industrial Electronics, 63(4), 2424–2433.

    Article  Google Scholar 

  5. Shih, C. Y., Chen, L. H., Chen, G. H., Wu, E. H. K., & Jin, M. H. (2012). Intelligent radio map management for future WLAN indoor location fingerprinting. In 2012 IEEE wireless communications and networking conference (WCNC) (pp. 2769–2773).

  6. Marques, N., Meneses, F., & Moreira, A. (2012). Combining similarity functions and majority rules for multi-building, multi-floor, WiFi positioning. In 2012 International conference on indoor positioning and indoor navigation (IPIN) (pp. 1–9).

  7. Xiao, J., Zhou, Z., Yi, Y., & Ni, L. M. (2016). A survey on wireless indoor localization from the device perspective. ACM Computing Surveys, 49(2), 25:1–25:31. https://doi.org/10.1145/2933232.

    Article  Google Scholar 

  8. Asuncion, A., & Newman, D. (2007). UCI machine learning repository. https://archive.ics.uci.edu/ml/index.php.

  9. Torres-Sospedra, J., Montoliu, R., Martínez-Usó, A., Avariento, J. P., Arnau, T. J., Benedito-Bordonau, M., et al. (2014). Ujiindoorloc: A new multi-building and multi-floor database for WLAN fingerprint-based indoor localization problems. In 2014 International conference on indoor positioning and indoor navigation (IPIN) (pp. 261–270).

  10. Torres-Sospedra, J., Rambla, D., Montoliu, R., Belmonte, O., & Huerta, J. (2015). UJIIndoorLoc-Mag: A new database for magnetic field-based localization problems. In 2015 International conference on indoor positioning and indoor navigation (IPIN) (pp. 1–10).

  11. Torres-Sospedra, J., Montoliu, R., Mendoza-Silva, G. M., Belmonte, O., Rambla, D., & Huerta, J. (2016). Providing databases for different indoor positioning technologies: Pros and cons of magnetic field and Wi-Fi based positioning. Mobile Information Systems. http://doi.org/10.1155/2016/6092618.

  12. Montoliu, R., Sansano, E., Torres-Sospedra, J., & Belmonte, O. (2017). IndoorLoc platform: A public repository for comparing and evaluating indoor positioning systems. In 2017 International conference on indoor positioning and indoor navigation (IPIN) (pp. 1–8).

  13. King, T., Kopf, S., Haenselmann, T., Lubberger, C., & Effelsberg, W. (2008). CRAWDAD dataset mannheim/compass (v. 2008-04-11). Downloaded from https://crawdad.org/mannheim/compass/20080411/fingerprint, traceset: fingerprint.

  14. Trawiński, K., Alonso, J. M., & Hernández, N. (2013). A multiclassifier approach for topology-based wifi indoor localization. Soft Computing, 17(10), 1817–1831. https://doi.org/10.1007/s00500-013-1019-5.

    Article  Google Scholar 

  15. Cooper, M., Biehl, J., Filby, G., & Kratz, S. (2016). LoCo: Boosting for indoor location classification combining Wi-Fi and BLE. Personal and Ubiquitous Computing, 20(1), 83–96. https://doi.org/10.1007/s00779-015-0899-z.

    Article  Google Scholar 

  16. Taniuchi, D., & Maekawa, T. (2014). Robust Wi-Fi based indoor positioning with ensemble learning. In 2014 IEEE 10th International conference on wireless and mobile computing, networking and communications (WiMob) (pp. 592–597).

  17. Bahl, P., & Padmanabhan, V. N. (2000). Radar: An in-building RF-based user location and tracking system. In Proceedings IEEE INFOCOM 2000. Conference on computer communications. Nineteenth annual joint conference of the IEEE computer and communications societies (Cat. No.00CH37064) (vol. 2, pp. 775–784).

  18. Youssef, M., & Agrawala, A. (2005). The horus WLAN location determination system. In Proceedings of the 3rd international conference on mobile systems, applications, and services, ser. MobiSys ’05 (pp. 205–218). New York, NY: ACM. http://doi.org/10.1145/1067170.1067193.

  19. Yen, C.-T., & Ke, C.-H. (2017). Improving tracking error by dead reckoning and RSSI technologies with a fuzzy fusion scheme in indoor location. Microsystem Technologies. https://doi.org/10.1007/s00542-017-3614-3.

  20. Seong, J.-H., & Seo, D.-H. (2018). Environment adaptive localization method using Wi-Fi and bluetooth low energy. Wireless Personal Communications, 99(2), 765–778. https://doi.org/10.1007/s11277-017-5151-x.

    Article  Google Scholar 

  21. Liu, H.-H. (2017). The quick radio fingerprint collection method for a WiFi-based indoor positioning system. Mobile Networks and Applications, 22(1), 61–71. https://doi.org/10.1007/s11036-015-0666-4.

    Article  Google Scholar 

  22. Gu, Y., Liu, J., Chen, Y., & Jiang, X. (2014). Constraint online sequential extreme learning machine for lifelong indoor localization system. In 2014 International joint conference on neural networks (IJCNN) (pp. 732–738).

  23. Ahriz, I., Oussar, Y., Denby, B., & Dreyfus, G. (2010). Full-band GSM fingerprints for indoor localization using a machine learning approach. International Journal of Navigation and Observation. http://doi.org/10.1155/2010/497829.

  24. Niu, J., Wang, B., Shu, L., Duong, T. Q., & Chen, Y. (2015). ZIL: An energy-efficient indoor localization system using ZigBee radio to detect WiFi fingerprints. IEEE Journal on Selected Areas in Communications, 33(7), 1431–1442.

    Article  Google Scholar 

  25. Moreno, V., Zamora, M. A., & Skarmeta, A. F. (2016). A low-cost indoor localization system for energy sustainability in smart buildings. IEEE Sensors Journal, 16(9), 3246–3262.

    Article  Google Scholar 

  26. Chen, Y., Guo, M., Shen, J., & Cao, J. (2017). Graphloc: A graph-based method for indoor subarea localization with zero-configuration. Personal and Ubiquitous Computing, 21(3), 489–505. https://doi.org/10.1007/s00779-017-1011-7.

  27. Ghosh, D., Roy, P., Chowdhury, C., & Bandyopadhyay, S. (2016). An ensemble of condition based classifiers for indoor localization. In 2016 IEEE International conference on advanced networks and telecommunications systems (ANTS) (pp. 1–6).

  28. Bacciu, D., Barsocchi, P., Chessa, S., Gallicchio, C., & Micheli, A. (2014). An experimental characterization of reservoir computing in ambient assisted living applications. Neural Computing and Applications, 24(6), 1451–1464.

    Article  Google Scholar 

  29. Torres-Sospedra, J., Jiménez, A. R., Knauth, S., Moreira, A., Beer, Y., Fetzer, T., et al. (2017). The smartphone-based offline indoor location competition at IPIN 2016: Analysis and future work. Sensors, 17(3). http://www.mdpi.com/1424-8220/17/3/557.

  30. Lohan, E. S., Torres-Sospedra, J., Leppäkoski, H., Richter, P., Peng, Z., & Huerta, J. (2017). Wi-Fi crowdsourced fingerprinting dataset for indoor positioning. Data, 2(4). http://www.mdpi.com/2306-5729/2/4/32.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandreyee Chowdhury.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, P., Chowdhury, C., Ghosh, D. et al. JUIndoorLoc: A Ubiquitous Framework for Smartphone-Based Indoor Localization Subject to Context and Device Heterogeneity. Wireless Pers Commun 106, 739–762 (2019). https://doi.org/10.1007/s11277-019-06188-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06188-2

Keywords

Navigation