Triangular Fuzzy Membership-Contrast Limited Adaptive Histogram Equalization (TFM-CLAHE) for Enhancement of Multimodal Biometric Images

Abstract

The research work proposes a novel triangular fuzzy membership (TFM) function-based contrast limited adaptive histogram equalization (CLAHE) for biometric image enhancement. Biometric images have wide applications in the areas of verification and authentication systems. For accurate identification and verification, pre-processing of captured biometric images becomes essential. When the region of interest is smaller than the original image, a variation of histogram equalization called adaptive histogram equalization (AHE) is used. AHE enhances contrast of images by considering local regions. Along with local contrast, noise in those regions also get amplified by using AHE. This amplification of noise can be resolved by applying a contrast limited AHE (CLAHE) which limits the contrast in the enhanced local regions by clipping the histogram at a pre-fixed limit. CLAHE yields good results by limiting the contrast and enhancing local regions, but it is image invariant since it uses pre-determined clip limit for limiting contrast. The proposed research work TFM-CLAHE puts forward the idea of image variant, automatic clip value determinant algorithm for enhancement. The algorithm employs triangular fuzzy membership function to determine clip-limit and limits contrast by clipping the histogram at the computed clip-level. TFM function computes the clipping parameter by considering intensities of pixels. The computed fuzzy clip-limit overrides the pre-defined limit. Consequently, the clipping parameter varies according to the image under consideration and yields better enhancement results. The proposed work is experimented on multimodal biometric images acquired from Chinese Academy of Science, Institute of Automation Iris, Face and Fingerprint databases. TFM-CLAHE computes appropriate clipping limit for each of these heterogenous images. The results of the proposed work are evaluated on the grounds of images’ average information content, mean square error, peak signal noise ratio, natural image quality evaluator, no-reference free energy based robust metric, blind image quality measure of enhanced images and no reference quality metric for contrast distortion. The results show good enhancement and these are compared with existing conventional image enhancement techniques.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  1. 1.

    Pratt, W. K. (2007). Digital image processing: PIKS inside (4th ed.). New York: Wiley.

    Google Scholar 

  2. 2.

    Su, X., Fang, W., Shen, Q., & Hao, X. (2013). An image enhancement method using the quantum-behaved particle swarm optimization with an adaptive strategy. Mathematical Problems in Engineering, 2013, 3.

    MathSciNet  Google Scholar 

  3. 3.

    Gu, K., Zhai, G., & Yang, X. (2014). Automatic contrast enhancement technology with saliency preservation. IEEE Transactions on Circuits and Systems for Video Technology, 25, 1480–1494.

    Google Scholar 

  4. 4.

    Ravichandran, C. G., & Magudeeswaran, V. (2012). An efficient method for contrast enhancement in still images using histogram modification framework. Journal of Computer Science, 8(5), 775–779.

    Article  Google Scholar 

  5. 5.

    Kim, Y. (1997). Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Transactions on Consumer Electronics, 43(1), 1–8.

    Article  Google Scholar 

  6. 6.

    Wan, Y., Chen, Q., & Zhang, B.-M. (1999). Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Transactions on Consumer Electronics, 45(1), 68–75.

    Article  Google Scholar 

  7. 7.

    Chen, S. D., & Ramli, A. R. (2003). Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Transactions on Consumer Electronics, 49(4), 1310–1319.

    Article  Google Scholar 

  8. 8.

    Chen, S. D., & Ramli, A. R. (2003). Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Transactions on Consumer Electronics, 49(4), 1301–1309.

    Article  Google Scholar 

  9. 9.

    Abdullah-Al-Wadud, M., Kabir, M. H., Dewan, M. A. A., & Chae, O. (2007). A dynamic histogram equalization for image contrast enhancement. IEEE Transactions on Consumer Electronics, 53(2), 593–600.

    Article  Google Scholar 

  10. 10.

    Kong, N. S. P., & Ibrahim, H. (2008). Color image enhancement using brightness preserving dynamic histogram equalization. IEEE Transactions on Consumer Electronics, 54(4), 1.

    Article  Google Scholar 

  11. 11.

    Magudeeswaran, V., & Fensia Singh, J. (2017). Contrast limited fuzzy adaptive histogram equalization for enhancement of brain images. International Journal of Imaging Systems and Technology, 27, 98–103.

    Article  Google Scholar 

  12. 12.

    Chandra, E., & Kanagalakshmi, K. (2011). Noise elimination in fingerprint image using median filter. International Journal of Advanced Networking and Application, 2(6), 950–955.

    Google Scholar 

  13. 13.

    Maurya, L., Mahapatra, P. K., & Kumar, A. (2017). A social spider image fusion approach for contrast enhancement and brightness preservation. Applied Soft Computing, 52, 575–592.

    Article  Google Scholar 

  14. 14.

    Jenifer, S., Parasuraman, S., & Kadirvelu, A. (2016). Contrast enhancement and brightness preserving of digital mammograms using fuzzy clipped contrast limited adaptive histogram equalization algorithm. Applied Soft Computing, 42, 167.

    Article  Google Scholar 

  15. 15.

    Magudeeswaran, V., & Ravichandran, V. (2013). Fuzzy logic based histogram equalization for image contrast enhancement. Mathematical Problems in Engineering, 2013, 1.

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Gui, Z., & Liu, Y. (2011). An image sharpening algorithm based on fuzzy logic. Optik, 122, 697–702.

    Article  Google Scholar 

  17. 17.

    Majumdar, J., & Kumar, S. (2014). Modified CLAHE: an adaptive algorithm for contrast enhancement of arial, medical and underwater images. International Journal of Computer Engineering and Technology, 5(11), 32–47.

    Google Scholar 

  18. 18.

    Wei, Z., Lidong, H., Jun, W., & Zebin, S. (2015). Entropy maximization histogram modification scheme for image enhancement. IET Image Processing, 9, 226–235.

    Article  Google Scholar 

  19. 19.

    Tang, J. R., & Mat Isa, N. A. (2014). Adaptive image enhancement based on bi-histogram equalization with a clipping limit. Computers and Electrical Engineering, 40(8), 86–103.

    Article  Google Scholar 

  20. 20.

    Zhuang, L., & Guan, Y. (2017). Image enhancement via subimage histogram equalization based on mean and variance. Computational Engineering and Neuroscience, 2017, 1.

    Google Scholar 

  21. 21.

    Saxena, K., Pokhriyal, A., & Lehri, S. (2014). SCIENCE: Soft computing image enhancement for contrast enhancement. International Journal of Advanced Computing, 47(1), 1.

    Google Scholar 

  22. 22.

    Sree Vidya, B., & Pugazhenthi, D. (2013). Multiple biometric security in cloud computing. International Journal of Advanced Research in Computer Science and Engineering, 3(4), 1.

    Google Scholar 

  23. 23.

    Sree Vidya, B., & Pugazhenthi, D. (2015). Multimodal biometric cryptographic based in cloud environment to enhance information security. International Conference World Academy of Science Engineering and Technology, 2, 1.

    Google Scholar 

  24. 24.

    Wang, Z., & Tao, J. (2006). A fast implementation of adaptive histogram equalization. In 8th international conference on signal processing (Vol. 2).

  25. 25.

    Hossain, F., & Alsharif, M. R. (2007). Image enhancement based on logarithmic transform coefficient and adaptive histogram equalization. International Conference on Convergence Information Technology, 1, 1439–1444.

    Google Scholar 

  26. 26.

    Reza, A. M. (2004). Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 38(1), 35–44.

    Article  Google Scholar 

  27. 27.

    Hitam, M. S., Awalludin, E. A., Yussof, W. N. J. H. W., & Bachok, Z. (2013). Mixture contrast limited adaptive histogram equalization for underwater image enhancement. In International conference on computer applications technology (ICCAT) (pp. 1–5).

  28. 28.

    Ooi, C. H., Pikkong, N. S., & Ibrahim, H. (2009). Bi-histogram equalization with a plateau limit for digital image enhancement. IEEE Transactions on Consumer Electronics, 55(4), 2072–2080.

    Article  Google Scholar 

  29. 29.

    Liang, K., Ma, Y., Xie, Y., Zhou, B., & Wang, R. (2012). A new adaptive contrast enhancement algorithm for infrared images based on double plateaus histogram equalization. Infrared Physics and Technology, 55, 309–315.

    Article  Google Scholar 

  30. 30.

    Chang, Y., & Chang, C. (2010). A simple histogram modification scheme for contrast enhancement. IEEE Transactions on Consumer Electronics, 56(2), 737–742.

    Article  Google Scholar 

  31. 31.

    Moorthy, A. K., & Bovik, A. C. (2011). Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Transactions on Image Processing, 20(12), 3350–3364.

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Mittal, A., Soundararajan, R., & Bovik, A. C. (2013). Making a completely blind image quality analyzer. IEEE Signal Processing Letters, 20(3), 209–212.

    Article  Google Scholar 

  33. 33.

    Sree Vidya, B., & Chandra, E. (2018). Multimodal biometric hashkey cryptography based authentication and encryption for advanced security in cloud. Biomedical Research, 5, 506–516.

    Google Scholar 

  34. 34.

    Gu, K., Lin, W., & Zhai, G. (2016). No-reference quality metric of contrast-distorted images based on information maximization. IEEE Transactions on Cybernatics, 47, 4559.

    Article  Google Scholar 

  35. 35.

    Gu, K., & Tao, D. (2017). Learning a no-reference quality assessment model of enhanced images with big data. IEEE Transactions on Neural Networks and Learning Systems, 29, 1301.

    Article  Google Scholar 

  36. 36.

    Gu, K., Zhai, G., Yang, X., & Zhang, W. (2015). Using free energy principle for blind image quality assessment. IEEE Transactions on Multimedia, 17(1), 50–63.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Sree Vidya.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sree Vidya, B., Chandra, E. Triangular Fuzzy Membership-Contrast Limited Adaptive Histogram Equalization (TFM-CLAHE) for Enhancement of Multimodal Biometric Images. Wireless Pers Commun 106, 651–680 (2019). https://doi.org/10.1007/s11277-019-06184-6

Download citation

Keywords

  • Adaptive histogram equalization (AHE)
  • Biometric images
  • Contrast limited adaptive histogram equalization (CLAHE)
  • Triangular fuzzy membership-contrast limited adaptive histogram equalization (TFM-CLAHE)
  • Triangular fuzzy membership (TFM)
  • Multimodal biometric images