Skip to main content

Advertisement

Log in

Design of Green Smart Room Using Fifth Generation Network Device Femtolet

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Designing smart room with energy-efficient data and application offloading facilities for the users is a crucial issue. This paper has proposed the architecture of a self-organized smart room where the users can offload their data and applications at low power and low latency. Sensors and detectors are used to collect status of the objects present in the room and according to the collected information, the microcontroller operates other devices e.g. lights, AC, smoke detector etc. located inside the room in order to create a self-organized environment. In the proposed architecture fifth generation network device Femtolet is used as a small home base station with cloud environment. The proposed smart room architecture is implemented using network simulator Qualnet version 7 and its performance is evaluated with respect to energy consumption, carried load, delay, jitter and throughput. The simulation results show that Femtolet reduces the energy consumption and delay in accessing cloud services by approximately 14–57% and 8–35% respectively than the femtocell base station to build a green smart home environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sang, Y. J., Hwang, H. G., & Kim, K. S. (2009). A self-organized femtocell for IEEE 802.16 e system. In Global telecommunications conference, 2009. GLOBECOM 2009. IEEE (pp. 1–5). IEEE.

  2. Meng, X., Yan, L., Rui, L., Gao, Z., & Qiu, X. S. (2009). A policy-based self-configuration management mechanism for home NodeB. In 15th Asia-Pacific conference on communications, 2009. APCC 2009 (pp. 778–781). IEEE.

  3. Rashidi, P., Cook, D. J., Holder, L. B., & Schmitter-Edgecombe, M. (2011). Discovering activities to recognize and track in a smart environment. IEEE Transactions on Knowledge and Data Engineering, 23(4), 527–539.

    Article  Google Scholar 

  4. Mukherjee, A., Bhattacherjee, S., Pal, S., & De, D. (2013). Femtocell based green power consumption methods for mobile network. Computer Networks, 57(1), 162–178.

    Article  Google Scholar 

  5. Mukherjee, A., De, D., & Deb, P. (2016). Interference management in macro-femtocell and micro-femtocell cluster-based long-term evaluation-advanced green mobile network. IET Communications, 10(5), 468–478.

    Article  Google Scholar 

  6. Ro, J. H., Lee, E. H., & Song, H. K. (2017). Adaptive femtocell design scheme in mobile communication systems. Wireless Personal Communications, 97(1), 811–820.

    Article  Google Scholar 

  7. Mukherjee, A., & De, D. (2014). A cost-effective location tracking strategy for femtocell based mobile network. In 2014 International conference on control, instrumentation, energy and communication (CIEC) (pp. 533–537). IEEE.

  8. Mukherjee, A., & De, D. (2013). Congestion detection, prevention and avoidance strategies for an intelligent, energy and spectrum efficient green mobile network. Journal of Computational Intelligence and Electronic Systems, 2(1), 1–19.

    Article  Google Scholar 

  9. Mukherjee, A., & De, D. (2016). Femtolet: A novel fifth generation network device for green mobile cloud computing. Simulation Modelling Practice and Theory, 62, 68–87.

    Article  Google Scholar 

  10. Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009). The case for vm-based cloudlets in mobile computing. IEEE Pervasive Computing, 8(4), 14–23.

    Article  Google Scholar 

  11. Duro, F. R., Blas, J. G., Higuero, D., Perez, O., & Carretero, J. (2015). CoSMiC: A hierarchical cloudlet-based storage architecture for mobile clouds. Simulation Modelling Practice and Theory, 50, 3–19.

    Article  Google Scholar 

  12. Munoz, O., Pascual-Iserte, A., & Vidal, J. (2013). Joint allocation of radio and computational resources in wireless application offloading. In Future network and mobile summit (FutureNetworkSummit), 2013 (pp. 1–10). IEEE.

  13. Barbarossa, S., Sardellitti, S., & Di Lorenzo, P. (2014). Communicating while computing: Distributed mobile cloud computing over 5G heterogeneous networks. IEEE Signal Processing Magazine, 31(6), 45–55.

    Article  Google Scholar 

  14. Lobillo, F., Becvar, Z., Puente, M. A., Mach, P., Presti, F. L., Gambetti, F., et al. (2014). An architecture for mobile computation offloading on cloud-enabled LTE small cells. In Wireless communications and networking conference workshops (WCNCW) (pp. 1–6). IEEE.

  15. Busso, C., Hernanz, S., Chu, C. W., Kwon, S. I., Lee, S., Georgiou, P. G., et al. (2005). Smart room: Participant and speaker localization and identification. In Proceedings (ICASSP’05). IEEE international conference on acoustics, speech, and signal processing, 2005 (Vol. 2, pp. 2–1117). IEEE.

  16. Pnevmatikakis, A. (2017). Recognising daily functioning activities in smart homes. Wireless Personal Communications, 96(3), 3639–3654.

    Article  Google Scholar 

  17. Ye, J., Stevenson, G., & Dobson, S. (2011). A top-level ontology for smart environments. Pervasive and Mobile Computing, 7(3), 359–378.

    Article  Google Scholar 

  18. Moncrieff, S., Venkatesh, S., West, G., & Greenhill, S. (2007). Multi-modal emotive computing in a smart house environment. Pervasive and Mobile Computing, 3(2), 74–94.

    Article  Google Scholar 

  19. Luhr, S., West, G., & Venkatesh, S. (2007). Recognition of emergent human behaviour in a smart home: A data mining approach. Pervasive and Mobile Computing, 3(2), 95–116.

    Article  Google Scholar 

  20. Dhurgadevi, M., & Devi, P. M. (2018). An analysis of energy efficiency improvement through wireless energy transfer in wireless sensor network. Wireless Personal Communications, 98(4), 3377–3391.

    Article  Google Scholar 

  21. Maciuca, A., Popescu, D., Strutu, M., & Stamatescu, G. (2013). Wireless sensor network based on multilevel femtocells for home monitoring. In IEEE seventh international conference on intelligent data acquisition and advanced computing systems (pp. 499–503). IEEE.

  22. Haiwen, Y., & Dawei, D. (2017). Development of a wireless sensor network with optical electric sensor for electric field measurement. Wireless Personal Communications, 97(2), 2191–2205.

    Article  Google Scholar 

  23. Hong, X., Nugent, C., Mulvenna, M., McClean, S., Scotney, B., & Devlin, S. (2009). Evidential fusion of sensor data for activity recognition in smart homes. Pervasive and Mobile Computing, 5(3), 236–252.

    Article  Google Scholar 

  24. Wang, Y., Chen, R., & Wang, D. C. (2015). A survey of mobile cloud computing applications: Perspectives and challenges. Wireless Personal Communications, 80(4), 1607–1623.

    Article  MathSciNet  Google Scholar 

  25. Shi, T., Yang, M., Li, X., Lei, Q., & Jiang, Y. (2016). An energy-efficient scheduling scheme for time-constrained tasks in local mobile clouds. Pervasive and Mobile Computing, 27, 90–105.

    Article  Google Scholar 

  26. Kwon, Y., Yi, H., Kwon, D., Yang, S., Cho, Y., & Paek, Y. (2016). Precise execution offloading for applications with dynamic behavior in mobile cloud computing. Pervasive and Mobile Computing, 27, 58–74.

    Article  Google Scholar 

  27. Miao, M., Wang, J., Li, H., & Chen, X. (2015). Secure multi-server-aided data deduplication in cloud computing. Pervasive and Mobile Computing, 24, 129–137.

    Article  Google Scholar 

  28. Yang, Y., Zhu, H., Lu, H., Weng, J., Zhang, Y., & Choo, K. K. R. (2016). Cloud based data sharing with fine-grained proxy re-encryption. Pervasive and Mobile Computing, 28, 122–134.

    Article  Google Scholar 

  29. Mukherjee, A., & De, D. (2016). Low power offloading strategy for femto-cloud mobile network. Engineering Science and Technology, an International Journal, 19(1), 260–270.

    Article  Google Scholar 

  30. De, D., & Mukherjee, A. (2015). Femto-cloud based secure and economic distributed diagnosis and home health care system. Journal of Medical Imaging and Health Informatics, 5(3), 435–447.

    Article  Google Scholar 

  31. De, D., & Mukherjee, A. (2014). Femtocell based economic health monitoring scheme using mobile cloud computing. In Advance computing conference (IACC), 2014 IEEE International (pp. 385–390). IEEE.

  32. Mukherjee, A., & De, D. (2014). Femtocell based green health monitoring strategy. In General assembly and scientific symposium (URSI GASS), 2014 XXXIth URSI (pp. 1–4). IEEE.

  33. Mukherjee, A., Gupta, P., & De, D. (2014). Mobile cloud computing based energy efficient offloading strategies for femtocell network. In Applications and innovations in mobile computing (AIMoC), 2014 (pp. 28–35). IEEE.

  34. Cook, D., & Das, S. K. (2004). Smart environments: Technology, protocols and applications (Vol. 43). New York: Wiley.

    Book  Google Scholar 

  35. Ashraf, I., Ho, L. T., & Claussen, H. (2010). Improving energy efficiency of femtocell base stations via user activity detection. In Wireless communications and networking conference (WCNC), 2010 IEEE (pp. 1–5). IEEE.

  36. Liu, C. P., Faryar, A., & Huber, K. (2014). U.S. Patent No. 8,798,017. Washington, DC: U.S. Patent and Trademark Office.

  37. Li, W., & Lu, E. Q. (2014). Design of Femtocell-based smart home system gateway. In P. Yarlagadda & S.-B. Choi (Eds.), Applied mechanics and materials (Vol. 530, pp. 662–666). Trans Tech Publications.

  38. Akinlabi, O. A., Paul, B. S., Joseph, M. K., & Ferreira, H. C. (2015). Indoor communication: Femtocell behavior in an indoor environment. In Proceedings of the international multiconference of engineers and computer scientists, Hong Kong (Vol. 2).

  39. Czaja, S., & Afsar, M. (2017). U.S. Patent No. 9,674,759. Washington, DC: U.S. Patent and Trademark Office.

  40. Gavrilovska, L., Rakovic, V., & Atanasovski, V. (2016). Visions towards 5G: Technical requirements and potential enablers. Wireless Personal Communications, 87(3), 731–757.

    Article  Google Scholar 

  41. Chih-Lin, I., Han, S., Xu, Z., Sun, Q., & Pan, Z. (2016). 5G: Rethink mobile communications for 2020+. Philosophical Transactions of the Royal Society A, 374(2062), 20140432.

    Article  Google Scholar 

  42. Chen, M., Zhang, Y., Hu, L., Taleb, T., & Sheng, Z. (2015). Cloud-based wireless network: Virtualized, reconfigurable, smart wireless network to enable 5G technologies. Mobile Networks and Applications, 20(6), 704–712.

    Article  Google Scholar 

  43. Okabe, J., & Matsuyama, T. (2005). U.S. Patent No. 6,970,085. Washington, DC: U.S. Patent and Trademark Office.

  44. Uchida, R., Yamasaki, T., Mimura, M., Hasimoto, K., & Kawabe, S. (1982). U.S. Patent No. 4,329,636. Washington, DC: U.S. Patent and Trademark Office.

  45. Park, Y. S., Lee, Y. H., & Park, S. H. (2002). U.S. Patent No. 6,490,455. Washington, DC: U.S. Patent and Trademark Office.

  46. Xia, Y. (1996). U.S. Patent No. 5,489,827. Washington, DC: U.S. Patent and Trademark Office.

Download references

Acknowledgements

Authors are grateful to Department of Science and Technology (DST) for DST-FIST Reference No.: SR/FST/ETI-296/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis De.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, P., Mukherjee, A. & De, D. Design of Green Smart Room Using Fifth Generation Network Device Femtolet. Wireless Pers Commun 104, 1037–1064 (2019). https://doi.org/10.1007/s11277-018-6066-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-6066-x

Keywords

Navigation