Skip to main content

Advertisement

Log in

Closed-Form Outage Probability Expressions for Multihop Cognitive Radio Network with Best Path Selection Schemes in RF Energy Harvesting Environment

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a comparative study of parallel best path selection (PBPS) and immediate best path selection IBPS in terms of outage probability and throughput has been done in a multi hop cognitive radio network. The closed form expressions for the outage probability of secondary network in PBPS protocol as well as IBPS protocol in multihop scenario have been derived. We also find the impact of the number of parallel paths in multihop scenario on the outage probability and throughput of secondary network. The performance of PBPS scheme is compared with IBPS scheme. An optimum value of initial harvesting time for secondary nodes \((\tau )\) to achieve maximum throughput is also found for both the path selection schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mitola, J. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  2. Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.

    Article  Google Scholar 

  3. Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2014). Throughput and ergodic capacity of wireless energy harvesting based DF relaying network. In IEEE international conference on communications (ICC), 2014 (pp. 4066–4071).

  4. Liu, Y., Mousavifar, S. A., Deng, Y., Leung, Cl, & Elkashlan, Maged. (2016). Wireless energy harvesting in a cognitive relay network. IEEE Transactions on Wireless Communications, 15(4), 2498–2508.

    Article  Google Scholar 

  5. Chi, X., Zheng, M., Liang, W., Haibin, Y., & Liang, Ying-Chang. (2016). Outage performance of underlay multi-hop cognitive relay networks with energy harvesting. IEICE Transactions on Communications, 6(20), 1148–1151.

    Google Scholar 

  6. Krikidis, I., Zheng, G., & Ottersten, B. (2013). Harvest-use cooperative networks with half/full-duplex relaying. In Wireless communications and networking conference (WCNC), 2013 IEEE, (pp. 4256–4260). IEEE.

  7. Tuyen, L. P., & Bao, V. N. Q. (2012). Outage performance analysis of dual-hop af relaying system with underlay spectrum sharing. In IEEE 14th international conference on advanced communication technology (ICACT), 2012, (pp 481–486).

  8. Lee, J., Wang, H., Andrews, J. G., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 10(2), 390–395.

    Article  Google Scholar 

  9. Najafi, M., Ardebilipour, M., Soleimani-Nasab, E., & Vahidian, S. (2015). Multi-hop cooperative communication technique for cognitive df and af relay networks. Wireless Personal Communications, 83(4), 3209–3221.

    Article  Google Scholar 

  10. Mondal, S., Roy, S. D., & Kundu, S. (2017). Energy harvesting based multihop relaying in cognitive radio network. Wireless Personal Communications, 97, 1–18.

    Article  Google Scholar 

  11. Mondal, S., Roy, S. D., & Kundu, S. (2017). Primary behaviour based energy harvesting multihop cognitive radio network. IET Communications, 11, 2466–2475.

    Article  Google Scholar 

  12. Mao, M., Cao, N., Chen, Y., & Zhou, Y. (2015). Multi-hop relaying using energy harvesting. IEEE Wireless Communications Letters, 4(5), 565–568.

    Article  Google Scholar 

  13. Bao, V. N., Quoc, T. T., Thanh, T. D., & Vu, T. D. (2013). Spectrum sharing-based multi-hop decode-and-forward relay networks under interference constraints: performance analysis and relay position optimization. Journal of Communications and Networks, 15(3), 266–275.

    Article  Google Scholar 

  14. Bao, V. N. Q., Duong, T. Q., da Costa, D. B., Alexandropoulos, G. C., & Nallanathan, Arumugam. (2013). Cognitive amplify-and-forward relaying with best relay selection in non-identical rayleigh fading. IEEE Communications Letters, 17(3), 475–478.

    Article  Google Scholar 

  15. Do, N. T., Bao, V. N. Q., & An, B. (2016). Outage performance analysis of relay selection schemes in wireless energy harvesting cooperative networks over non-identical rayleigh fading channels. Sensors, 16(3), 295.

    Article  Google Scholar 

  16. Nguyen, N.-P., Duong, T. Q., Ngo, H. Q., Hadzi-Velkov, Z., & Shu, Lei. (2016). Secure 5g wireless communications: A joint relay selection and wireless power transfer approach. IEEE. access, 4, 3349–3359.

    Article  Google Scholar 

  17. Doan, X.-T., Nguyen, N.-P., Yin, C., Da Costa, D. B., & Duong, Trung Q. (2017). Cognitive full-duplex relay networks under the peak interference power constraint of multiple primary users. EURASIP Journal on Wireless Communications and Networking, 2017(1), 8.

    Article  Google Scholar 

  18. Boddapati, H. K., Prakriya, S., & Bhatnagar, M. R. (2016). Outage analysis of cluster-based multi-hop cognitive radio networks. In IEEE 83rd vehicular technology conference (VTC Spring), 2016, (pp. 1–5).

  19. Bhatnagar, M. R, Mallik, R. K., & Tirkkonen, O. (2016). Performance evaluation of best-path selection in a multihop decode-and-forward cooperative system. IEEE Transactions on Vehicular Technology, 65(4), 2722–2728.

    Article  Google Scholar 

  20. Barua, B., Safaei, F., & Abolhasan, M. (2010). On the outage of multihop parallel relay networks. In IEEE 72nd vehicular technology conference fall (VTC 2010-Fall), 2010, (pp. 1–5).

  21. Kumar, D., & Kumar, A. (2016) Outage probability analysis of multihop-multicast cooperative system. International Journal of Computer Applications, 148(5).

    Article  Google Scholar 

  22. Gradshteyn, I. S., & Ryzhik, I. M. (2014). Table of integrals, series, and products. New York: Academic press.

    MATH  Google Scholar 

Download references

Acknowledgements

The work is supported by Visvesvaraya research grant under Media Lab Asia (PhD-MLA/4(29)/2015-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Mondal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A.1 Appendix I: Proof of proposition 1 in (14)

Proof

Considering the interference contributed by PT, the cdf of SINR become analytically untraceable. To avoid the mathematical complexity we do not consider interference. From the (7), we can write

$$\begin{aligned} \begin{aligned} {F^{PBPS}_{{\gamma _{({l^{**}},m + 1)}}}}({\gamma _{th}}){\mathrm{{ }}}&= {P_r}\left\{ {{\gamma _{({l^{**}},m + 1)}}< {\gamma _{th}}} \right\} \\&= {P_r}\left\{ {\frac{{min(AZ,\frac{{{I_P}}}{Y})X}}{{{N_o}}}< {\gamma _{th}}} \right\} \\&=\Pr \left\{ {\min \left( {AZ,\frac{{{I_P}}}{Y}} \right) X< {\gamma _{th}}{N_0}} \right\} \\&= \underbrace{\Pr \left\{ {X< \frac{{{\gamma _{th}}{N_0}}}{{Az}},\;Y< \frac{{{I_P}}}{{Az}}} \right\} }_{{P^{PBPS}_1}} + \underbrace{\Pr \left\{ {X < \frac{{{\gamma _{th}}{N_0}y}}{{{I_P}}},\;Z \ge \;\frac{{{I_P}}}{{Ay}}} \right\} }_{{P^{PBPS}_2}} \end{aligned} \end{aligned}$$
(19)

In \(P^{PBPS}_1\) of (19), X and Y are independent over a given Z and taking expected value of \(P_1\) over the distribution Z, we have

$$\begin{aligned} \begin{aligned} {P^{PBPS}_1}&= \int _0^\infty {{F_X}\left( {\frac{{{\gamma _{th}}{N_0}}}{{Az}}} \right) } \;{F_Y}\left( {\frac{{{I_P}}}{{Az}}} \right) {f_Z}\left( z \right) dz\\&= \int \limits _0^\infty {\left( {1 - {e^{ - \frac{{{\gamma _{th}}{N_0}}}{{{\lambda _x}Az}}}}} \right) \left( {1 - {e^{ - \frac{{{I_P}}}{{{\lambda _y}Az}}}}} \right) \frac{1}{{{\lambda _z}}}{e^{ - \frac{z}{{{\lambda _z}}}}}} dz\\&= \frac{1}{{{\lambda _z}}}\int \limits _0^\infty {{e^{ - \frac{z}{{{\lambda _z}}}}}} dz \\&\quad - \frac{1}{{{\lambda _z}}}\int \limits _0^\infty {{e^{ - \left( {\frac{{{\gamma _{th}}{N_0}}}{{{\lambda _x}Az}} + \frac{z}{{{\lambda _z}}}} \right) }}} dz - \frac{1}{{{\lambda _z}}}\int \limits _0^\infty {{e^{ - \left( {\frac{{{I_P}}}{{{\lambda _y}Az}} + \frac{z}{{{\lambda _z}}}} \right) }}} dz + \frac{1}{{{\lambda _z}}}\int \limits _0^\infty {{e^{ - \left( {\frac{{{\gamma _{th}}{N_0}}}{{{\lambda _x}Az}} + \frac{{{I_P}}}{{{\lambda _y}Az}} + \frac{z}{{{\lambda _z}}}} \right) }}} dz\\&\begin{array}{l} = 1 - \frac{1}{{{\lambda _z}}}\sqrt{\frac{{4{\gamma _{th}}{N_0}{\lambda _z}}}{{{\lambda _x}A}}} {K_1}\left( {\sqrt{\frac{{4{\gamma _{th}}{N_0}}}{{{\lambda _x}{\lambda _z}A}}} } \right) - \frac{1}{{{\lambda _z}}}\sqrt{\frac{{4{I_P}{\lambda _z}}}{{{\lambda _y}A}}} {K_1}\left( {\sqrt{\frac{{4{I_P}}}{{{\lambda _y}{\lambda _z}A}}} } \right) \\ + \frac{1}{{{\lambda _z}}}\sqrt{4\left( {\frac{{{\gamma _{th}}{N_0}}}{{{\lambda _x}A}} + \frac{{{I_P}}}{{{\lambda _y}A}}} \right) {\lambda _z}} {K_1}\left( {\sqrt{4\left( {\frac{{{\gamma _{th}}{N_0}}}{{{\lambda _x}A}} + \frac{{{I_P}}}{{{\lambda _y}A}}} \right) \frac{1}{{{\lambda _z}}}} } \right) \end{array} \end{aligned} \end{aligned}$$
(20)

where \(\;\int \nolimits _0^\infty {{e^{ - \;\frac{\beta }{{4x}} - \gamma x}}dx} = \sqrt{\frac{\beta }{\gamma }} {K_1}\left( {\sqrt{\beta \gamma } } \right) \) is used [22, §3.324.1] and \(K_1(.)\) is the first order modified Bessel function of the second kind.

In \(P^{PBPS}_2\) of (19), X and Z are independent over a given Y and taking expected value of \(P_2\) over the distribution Y, we have

$$\begin{aligned} \begin{aligned} {P^{PBPS}_2}&= \int \limits _0^\infty {{F_X}\left( {\frac{{{\gamma _{th}}{N_0}y}}{{{I_P}}}} \right) \left\{ {1 - {F_Z}\left( {\frac{{{I_P}}}{{Ay}}} \right) } \right\} {f_Y}\left( y \right) dy}\\&= \int \limits _0^\infty {\left( {1 - {e^{ - \frac{{{\gamma _{th}}{N_0}y}}{{{\lambda _x}{I_P}}}}}} \right) {e^{ - \frac{{{I_P}}}{{{\lambda _z}Ay}}}}\frac{1}{{{\lambda _y}}}{e^{ - \frac{y}{{{\lambda _y}}}}}dy}\\&= \frac{1}{{{\lambda _y}}}\int \limits _0^\infty {{e^{ - \left( {\frac{{{I_P}}}{{{\lambda _z}Ay}} + \frac{y}{{{\lambda _y}}}} \right) }}dy} - \frac{1}{{{\lambda _y}}}\int \limits _0^\infty {{e^{ - \left( {\frac{{{I_P}}}{{{\lambda _z}Ay}} + \frac{y}{{{\lambda _y}}} + \frac{{{\gamma _{th}}{N_0}y}}{{{\lambda _x}{I_P}}}} \right) }}dy}\\&= \frac{1}{{{\lambda _y}}}\sqrt{\frac{{4{I_P}{\lambda _y}}}{{{\lambda _z}A}}} {K_1}\left( {\sqrt{\frac{{4{I_P}}}{{{\lambda _y}{\lambda _z}A}}} } \right) \\&\quad - \frac{1}{{{\lambda _y}}}\sqrt{\frac{{4{I_P}}}{{{\lambda _z}A\left( {\frac{{{\gamma _{th}}{N_0}}}{{{\lambda _x}{I_P}}} + \frac{1}{{{\lambda _y}}}} \right) }}} {K_1}\left( {\sqrt{\frac{{4{I_P}}}{{{\lambda _z}A}}\left( {\frac{{{\gamma _{th}}{N_0}}}{{{\lambda _x}{I_P}}} + \frac{1}{{{\lambda _y}}}} \right) } } \right) \end{aligned} \end{aligned}$$
(21)

Similar as (20), \(\;\int \limits _0^\infty {{e^{ - \;\frac{\beta }{{4x}} - \gamma x}}dx} = \sqrt{\frac{\beta }{\gamma }} {K_1}\left( {\sqrt{\beta \gamma } } \right) \) is used [22, §3.324.1]. Plugging (20) and (21) in (19), we obtain the \({F^{PBPS}_{{\gamma _{({l^{**}},m + 1)}}}}({\gamma _{th}}){\mathrm{{ }}}\) expression in (14). \(\square \)

1.2 A.2 Appendix II: Proof of proposition 2 in (18)

Proof

Considering the interference coming from PT, the cdf of SINR becomes analytically untraceable. To reduce the mathematical complexity, we neglect the interference from PT. From the (7), we can write

$$\begin{aligned}&{F^{IBPS}_{{\gamma _{({l^{**}},m + 1)}}}}({\gamma _{th}}){\mathrm{{ }}} = {P_r}\left\{ {{\gamma _{({l^{**}},m + 1)}}< {\gamma _{th}}} \right\} \nonumber \\&= {P_r}\left\{ {\frac{{min(AZ,\frac{{{I_P}}}{Y})X}}{{{N_o}}}< {\gamma _{th}}} \right\} \nonumber \\&=\Pr \left\{ {\min \left( {AZ,\frac{{{I_P}}}{Y}} \right) X< {\gamma _{th}}{N_0}} \right\} \nonumber \\&= \underbrace{\Pr \left\{ {X< \frac{{{\gamma _{th}}{N_0}}}{{Az}},\;Y< \frac{{{I_P}}}{{Az}}} \right\} }_{{P^{IBPS}_1}} + \underbrace{\Pr \left\{ {X < \frac{{{\gamma _{th}}{N_0}y}}{{{I_P}}},\;Z \ge \;\frac{{{I_P}}}{{Ay}}} \right\} }_{{P^{IBPS}_2}} \end{aligned}$$
(22)
$$\begin{aligned}&{P^{IBPS}_1} = \int \limits _0^\infty {{F_X}\left( {\frac{{{\gamma _{th}}{N_0}}}{{Az}}} \right) } {F_Y}\left( {\frac{{{I_P}}}{{Az}}} \right) {f_Z}\left( z \right) dz \nonumber \\&= \int \limits _0^\infty {{{\left( {1 - {e^{ - \frac{{{\gamma _{th}}{N_0}}}{{{\lambda _w}Az}}}}} \right) }^L}} \left( {1 - {e^{ - \frac{{{I_P}}}{{{\lambda _y}Az}}}}} \right) \frac{1}{{{\lambda _z}}}{e^{ - \frac{z}{{{\lambda _z}}}}}dz \nonumber \\&= \int \limits _0^\infty {{{\left( {1 - {e^{ - \frac{{{\gamma _{th}}{N_0}}}{{{\lambda _w}Az}}}}} \right) }^L}} \frac{1}{{{\lambda _z}}}{e^{ - \frac{z}{{{\lambda _z}}}}}dz - \int \limits _0^\infty {{{\left( {1 - {e^{ - \frac{{{\gamma _{th}}{N_0}}}{{{\lambda _w}Az}}}}} \right) }^L}} \frac{1}{{{\lambda _z}}}{e^{ - \left( {\frac{z}{{{\lambda _z}}} + \frac{{{I_P}}}{{{\lambda _y}Az}}} \right) }}dz\nonumber \\&= \int \limits _0^\infty {\sum \limits _{l = 0}^L {{{\left( { - 1} \right) }^l}{}^L{C_l}} } {e^{ - l\frac{{{\gamma _{th}}{N_0}}}{{{\lambda _w}Az}}}}\frac{1}{{{\lambda _z}}}{e^{ - \frac{z}{{{\lambda _z}}}}}dz \nonumber \\&\quad - \int \limits _0^\infty {\sum \limits _{l = 0}^L {{{\left( { - 1} \right) }^l}{}^L{C_l}} } {e^{ - l\frac{{{\gamma _{th}}{N_0}}}{{{\lambda _w}Az}}}}\frac{1}{{{\lambda _z}}}{e^{ - \left( {\frac{z}{{{\lambda _z}}} + \frac{{{I_P}}}{{{\lambda _y}Az}}} \right) }}dz\nonumber \\&= \sum \limits _{l = 0}^L {{{\left( { - 1} \right) }^l}{}^L{C_l}} \frac{1}{{{\lambda _z}}}\sqrt{\frac{{4l{\gamma _{th}}{N_0}{\lambda _z}}}{{{\lambda _w}A}}} {K_1}\left( {\sqrt{\frac{{4l{\gamma _{th}}{N_0}}}{{{\lambda _z}{\lambda _w}A}}} } \right) \nonumber \\&- \sum \limits _{l = 0}^L {{{\left( { - 1} \right) }^l}{}^L{C_l}} \frac{1}{{{\lambda _z}}}\sqrt{\left( {\frac{{4l{\gamma _{th}}{N_0}}}{{{\lambda _w}A}} + \frac{{4{I_P}}}{{{\lambda _y}A}}} \right) {\lambda _z}} {K_1}\left( {\sqrt{\left( {\frac{{4l{\gamma _{th}}{N_0}}}{{{\lambda _w}A}} + \frac{{4{I_P}}}{{{\lambda _y}A}}} \right) \frac{1}{{{\lambda _z}}}} } \right) \end{aligned}$$
(23)
$$\begin{aligned}&{P^{IBPS}_2} = {F_X}\left( {\frac{{{\gamma _{th}}{N_0}y}}{{{I_P}}}} \right) \left( {1 - {F_Z}\left( {\frac{{{I_P}}}{{Ay}}} \right) } \right) {f_Y}\left( y \right) dy\nonumber \\&= \int \limits _0^\infty {{{\left( {1 - {e^{ - \frac{{{\gamma _{th}}{N_0}y}}{{{\lambda _w}{I_P}}}}}} \right) }^L}{e^{ - \frac{{{I_P}}}{{{\lambda _z}Ay}}}}} \frac{1}{{{\lambda _y}}}{e^{ - \frac{y}{{{\lambda _y}}}}}dy\nonumber \\&= \int \limits _0^\infty {\sum \limits _{l = 0}^L {{{\left( { - 1} \right) }^l}{}^L{C_l}} {e^{ - l\frac{{{\gamma _{th}}{N_0}y}}{{{\lambda _w}{I_P}}}}}} \frac{1}{{{\lambda _y}}}{e^{ - \left( {\frac{y}{{{\lambda _y}}} + \frac{{{I_P}}}{{{\lambda _z}Ay}}} \right) }}dy\nonumber \\&= \sum \limits _{l = 0}^L {{{\left( { - 1} \right) }^l}{}^L{C_l}} \frac{1}{{{\lambda _y}}}\sqrt{\frac{{4{I_P}}}{{{\lambda _z}A\left( {l\frac{{{\gamma _{th}}{N_0}}}{{{\lambda _w}{I_P}}} + \frac{1}{{{\lambda _y}}}} \right) }}} {K_1}\left( {\sqrt{\frac{{4{I_P}}}{{{\lambda _z}A}}\left( {l\frac{{{\gamma _{th}}{N_0}}}{{{\lambda _w}{I_P}}} + \frac{1}{{{\lambda _y}}}} \right) } } \right) \end{aligned}$$
(24)

\(\square \)

Plugging (23) and (24) in (22), we obtain the \({F^{IBPS}_{{\gamma _{({l^{**}},m + 1)}}}}({\gamma _{th}}){\mathrm{{ }}}\) expression in (18).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S., Roy, S.D. & Kundu, S. Closed-Form Outage Probability Expressions for Multihop Cognitive Radio Network with Best Path Selection Schemes in RF Energy Harvesting Environment. Wireless Pers Commun 103, 2197–2212 (2018). https://doi.org/10.1007/s11277-018-5904-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5904-1

Keywords

Navigation