Clustering with Load Balancing-Based Routing Protocol for Wireless Sensor Networks


In this paper we propose a routing protocol based on clustering (IGP-C Protocol) to extend the lifetime in the context of wireless sensor networks while optimizing other resources (memory and processor). Firstly, a clustering algorithm and a load balancing technique are used together in order to reap the benefits of both approaches. The proposed clustering algorithm with load balancing (CALB Algorithm) is a fully distributed algorithm performed by each sensor and requires only communication with its immediate neighbors. Secondly, an Improved Gossiping Protocol (IGP) is proposed to extend the CALB algorithm to the data routing. The simulation results demonstrate the better and promising performances of the IGP-C protocol compared with the other protocols proposed in the literature. The IGP-C protocol allows a better distribution of energy, memory and processing capabilities of cluster-heads and reduces the number of clusters consisting of a single sensor along with the number of iterations. This demonstrates the effectiveness of the cluster-heads election process which improves the load balancing in the wireless sensors network in terms of cluster-heads load and clusters size. Furthermore, the proposed routing strategy builds around the clustering algorithm, is effective since it reduces the data transmission delay and prolongs the network lifetime.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Abbasi, A. A., & Younis, M. (2007). A survey on clustering algorithms for wireless sensor networks. Computer Communications, Elsevier, 30(14–15), 2826–2841.

    Article  Google Scholar 

  2. 2.

    Al-karaki, J. N., & Kamal, A. E. (2004). Routing techniques in wireless sensor networks: A survey. IEEE Wireless Communications, 11(6), 6–28.

    Article  Google Scholar 

  3. 3.

    Chen, J., Salim, M. B., & Matsumoto, M. (2011). A novel clustering scheme for sensor networks based on intra-cluster connectivity. In Proceedings of WSN, France.

  4. 4.

    Forero, P. A., Cano, A., & Giannakis, G. B. (2011). Distributed clustering using wireless sensor networks. IEEE Journal of Selected Topics in Signal Processing, 5(4), 707–724.

    Article  Google Scholar 

  5. 5.

    Lin, C. R., & Gerla, M. (1997). Adaptive clustering for mobile wireless networks. IEEE Journal on Selected Areas in Communications, 15(7), 1265–1275.

    Article  Google Scholar 

  6. 6.

    Youssef, M. A., Youssef, A., & Younis, M. F. (2009). Overlapping multi hop clustering for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 20(12), 1844–1856.

    Article  Google Scholar 

  7. 7.

    Cheng, C. T., Tse, C. K., & Lau, F. C. M. (2011). A clustering algorithm for wireless sensor networks based on social insect colonies. IEEE Sensors Journal, 1(3), 711–721.

    Article  Google Scholar 

  8. 8.

    Younis, O., Krunz, M., & Ramasubramanian, S. (2006). Node clustering in wireless sensor networks: Recent developments and deployment challenges. IEEE Network, 20(3), 20–25.

    Article  Google Scholar 

  9. 9.

    Dai, H., & Han, R. (2003). A node-centric load balancing algorithm for wireless sensor networks. In IEEE global communications conference (GLOBECOM)-wireless communications, USA.

  10. 10.

    Ghiasi, S., Srivastava, A., Yang, X., & Sarrafzadeh, M. (2002). Optimal energy aware clustering in sensor networks. Sensors Journal, 2(7), 258–269.

    Article  Google Scholar 

  11. 11.

    Hsiao, P. H., Hwang, A., Kung, H. T., & Vlah, D. (2001). Load-balancing routing for wireless access networks. In Proceedings of IEEE infocom, pp. 986–995, USA.

  12. 12.

    Ma, M., & Yang, Y. (2006). Clustering and load balancing in hybrid sensor networks with mobile cluster heads. In Proceedings of the 3rd international conference on Quality of service in heterogeneous wired/wireless networks, Canada.

  13. 13.

    Qin, M., & Zimmermann, R. (2007). Vca: An energy-efficient voting-based clustering algorithm for sensor networks. Journal of Universal Computer Science, 13(1), 87–109.

    Google Scholar 

  14. 14.

    Tellioglu, Y., & Mantar, H. A. (2009). A proportional load balancing for wireless sensor networks. In Third international conference on sensor technologies and applications, Greece.

  15. 15.

    Zhang, J., & Li, J. (2010). Load-balanced route discovery for wireless sensor networks. Journal of Networks, 5(9), 1060–1067.

    Google Scholar 

  16. 16.

    Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless sensor networks. In Proceedings of the IEEE Hawaii international conference on system sciences, pp. 3005–3014, USA.

  17. 17.

    Bakaraniya, P., & Mehta, S. (2013). K-leach: An improved leach protocol for lifetime improvement in WSN. International Journal of Engineering Trends and Technology (IJETT), 4(5), 1521–1526.

    Google Scholar 

  18. 18.

    Ding, X. X., Ling, M., Wang, Z. J., & Song, F. L. (2017). Dk-leach: An optimized cluster structure routing method based on leach in wireless sensor networks. Wireless Personnel Communication, 96(4), 1–11.

    Google Scholar 

  19. 19.

    Lindsey, S., & Raghavendra, C. S. (2002). Pegasis: Power-efficient gathering in sensor information systems. In Aerospace conference proceedings, pp. 1125–1130, USA.

  20. 20.

    Madheswaran, M., & Shanmugasundaram, R. N. (2016). Performance evaluation of balanced partitioning dynamic cluster head algorithm (bp-dca) for wireless sensor networks. Wireless Personnel Communication, 89(1), 195–210.

    Article  Google Scholar 

  21. 21.

    Mahmood, D., Javaid, N., Mahmood, S., Qureshi, S., Memon, A. M., & Zaman, T. (2013). Modleach: A variant of leach for wsns. In Eighth international conference on broadband and wireless computing, communication and applications, pp. 158–163, France.

  22. 22.

    Ran, G., Zhang, H., & Gong, S. (2010). Improving on leach protocol of wireless sensor networks using fuzzy logic. Journal of Information & Computational Science, 7(3), 767–775.

    Google Scholar 

  23. 23.

    Xiangning, F., & Yulin, S. (2007). Improvement on leach protocol of wireless sensor network. In International conference on sensor technologies and applications, SensorComm 2007, pp. 260–264, Spain.

  24. 24.

    Younis, O., & Fahmy, S. (2004). Heed: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.

    Article  Google Scholar 

  25. 25.

    Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks: The International Journal of Computer and Telecommunications Networking, 38(4), 393–422.

    Article  Google Scholar 

  26. 26.

    Lin, H., Wang, L., & Kong, R. (2015). Energy efficient clustering protocol for large-scale sensor networks. IEEE Sensors Journal, 15(12), 7150–7160.

    Article  Google Scholar 

  27. 27.

    Kumar, B., Singh, S., & Chand, S. (2016). Energy efficient clustering protocol using fuzzy logic for heterogeneous wsns. Wireless Personnel Communication, 86(2), 451–475.

    Article  Google Scholar 

  28. 28.

    Liao, Y., Qi, H., & Li, W. (2013). Load-balanced clustering algorithm with distributed self-organization for wireless sensor networks. IEEE Sensors Journal, 13(5), 1498–1506.

    Article  Google Scholar 

  29. 29.

    Ahmad, A., Javaid, N., Khan, Z. A., Qasim, U., & Alghamdi, T. A. (2014). (ach) \({}^{2}\) : Routing scheme to maximize lifetime and throughput of wireless sensor networks. IEEE Sensors Journal, 14(10), 3516–3532.

    Article  Google Scholar 

  30. 30.

    Amerqasem, A., Fawzy, A., Shokair, M., Saad, W., El-halafawy, S., & El-korany, A. (2017). Energy efficient intra cluster transmission in grid clustering protocol for wireless sensor networks. Wireless Personnel Communication, 1–18.

  31. 31.

    Gupta, I., Riordan, D., & Sampalli, S. (2005). Cluster-head election using fuzzy logic for wireless sensor networks. In Proceedings of communication networks and services research conference, pp. 255–260, Canada.

  32. 32.

    Fan, Z., & Zhou, H. (2006). A distributed weight-based clustering algorithm for WSNs. In Proceedings of the international conference on wireless communications, networking and mobile computing (WiCOM 2006), pp. 1–5, China.

Download references

Author information



Corresponding author

Correspondence to Nadjet Khoulalene.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khoulalene, N., Bouallouche-Medjkoune, L., Aissani, D. et al. Clustering with Load Balancing-Based Routing Protocol for Wireless Sensor Networks. Wireless Pers Commun 103, 2155–2175 (2018).

Download citation


  • Wireless Sensor Networks
  • Clustering
  • Load balancing
  • Routing
  • Resources’ optimization (energy, memory and processor)