Wireless Personal Communications

, Volume 103, Issue 2, pp 1725–1764 | Cite as

OFDM-Based TVWS-IEEE Standards: A Survey of PHY and Cognitive Radio Features

  • Ajit Singh
  • Sagar S. Salwe
  • K. Krishna Naik
  • C. R. S. Kumar


Cognitive radio (CR) has been recognized as future prospect for efficient and dynamic allocation of bandwidth among users of which dynamic spectrum access is an important aspect focusing on identification and opportunistic utilization of vacant spectrum in television broadcasting licensed bands, known as television white spaces (TVWS). TVWS has been selected by numerous IEEE standards spanning diverse operating zones for implementing CR technology. Specifically, we focus our attention to IEEE 802.22, IEEE 802.11af and IEEE 802.15.4m standards operating in TVWS pertaining to regional, local and personal area networks respectively. The PHY layer in each of these standards is depending on orthogonal frequency division multiplexing (OFDM) for spectrum-wise efficient communication as well as dynamic frequency allocation. Pertinent OFDM design challenges corresponding to IEEE standards in TVWS are revealed. PHY layer structure and cognitive techniques employed in cognition-aware IEEE standards in TVWS are reviewed in detail. Lastly, open research issues and implementation challenges for TVWS IEEE standards are highlighted.


Cognitive radio Geolocation IEEE standards OFDM Physical layer TV white spaces 



  1. 1.
    U.S. Department of Commerce, National Telecommunications and Information Administration, Office of Spectrum Management. (2003). U.S. frequency allocation chart, 2003.
  2. 2.
    Department of Telecommunications, Ministry of Communications & Information Technology, Government of India. (2011). National frequency allocation plan—2011. Frequency Allocation Plan-2011.pdf.
  3. 3.
    Federal Communications Commission, Washington. D.C. (2002). Spectrum policy task force report, FCC spectrum policy task force, ET Docket no. 02-135.
  4. 4.
    IEEE Standard for WirelessMAN-Advanced Air Interface for Broadband Wireless Access Systems. (2012). IEEE 802.16.1-2012.Google Scholar
  5. 5.
    IEEE DySPAN. (2015). IEEE communications society.
  6. 6.
    Sum, C., Villardi, G. P., et al. (2013). Cognitive communication in TV white spaces: An overview of regulations, standards, and technology. IEEE Communications Magazine, 51(7), 138–145.CrossRefGoogle Scholar
  7. 7.
    Mitola III, J. (1999). Cognitive radio: Model-based competence for software radios. Licentiate Thesis, KTH Royal Institute of Technology.Google Scholar
  8. 8.
    Stevenson, C., Chouinard, G., Lei, Z., Hu, W., Shellhammer, S., & Caldwell, W. (2009). IEEE 802.22: The first cognitive radio wireless regional area network standard. IEEE Communications Magazine, 47(1), 130–138.CrossRefGoogle Scholar
  9. 9.
    Grønsund, P., Pawelczak, P., Park, J., & Cabric, D. (2014). System level performance of IEEE 802.22-2011 with sensing-based detection of wireless microphones. IEEE Communications Magazine, 52(1), 200–209.CrossRefGoogle Scholar
  10. 10.
    Sherman, M., Mody, A. N., Martinez, R., Rodriguez, C., & Reddy, R. (2008). IEEE standards supporting cognitive radio and networks, dynamic spectrum access, and coexistence. IEEE Communications Magazine, 46(7), 72–79.CrossRefGoogle Scholar
  11. 11.
    Granelli, F., Pawelczak, P., Prasad, R. V., et al. (2010). Standardization and research in cognitive and dynamic spectrum access networks: IEEE SCC41 efforts and other activities. IEEE Communications Magazine, 48(1), 71–79.CrossRefGoogle Scholar
  12. 12.
    IEEE Standard for Wireless Regional Area Networks (WRAN)—Part 22. (2011). Cognitive wireless RAN medium access control (MAC) and physical layer (PHY) specifications: Policies and procedures for operation in the TV bands. IEEE Std. 802.22-2011.Google Scholar
  13. 13.
    IEEE Standard for Wireless Regional Area Networks (WRAN)—Part 22. (2015). Cognitive wireless RAN medium access control (MAC) and physical layer (PHY) specifications: Amendment 2: Enhancement for broadband services and monitoring applications. IEEE Std. 802.22b-2015.Google Scholar
  14. 14.
    IEEE Standard for Local and Metropolitan Area Networks—Part 11. (2013). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 5: Television white spaces (TVWS) operation. IEEE Std. 802.11af-2013.Google Scholar
  15. 15.
    IEEE Standard for Local and Metropolitan Area Networks—Part 15.4. (2014). Low-rate wireless personal area networks (LR-WPANs) amendment 6: TV white space between 54 and 862 MHz physical layer. IEEE Std. 802.15.4m-2014.Google Scholar
  16. 16.
    IEEE Standard for Local and Metropolitan Area Networks—Part 15.4. (2011). Low-rate wireless personal area networks (LR-WPANs). IEEE Std. 802.15.4-2011.Google Scholar
  17. 17.
    Brown, T. X., & Sicker, D. C. (2007). Can cognitive radio support broadband wireless access? In Proceedings of IEEE DySPAN (pp. 123–132).Google Scholar
  18. 18.
    Chang, R. W. (1966). Synthesis of band-limited orthogonal signals for multichannel data transmission. Bell System Technical Journal, 45(10), 1775–1796.CrossRefGoogle Scholar
  19. 19.
    Weinstein, S. B., & Ebert, P. M. (1971). Data transmission by frequency-division multiplexing using the discrete fourier transform. IEEE Transactions on Communication Technology, 19(5), 628–634.CrossRefGoogle Scholar
  20. 20.
    Peled, R., & Ruiz, A. (1980). Frequency domain data transmission using reduced computational complexity algorithms. In Proceedings of IEEE ICASSP (pp. 964–967).Google Scholar
  21. 21.
    Prasad, R. (2004). OFDM for wireless communication systems. Artech House, Inc. ISBN: 1-58053-796-0.Google Scholar
  22. 22.
    Wong, C. Y., Cheng, R. S., Letaief, K. B., & Murch, R. D. (1999). Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE Journal on Selected Areas in Communications, 17(10), 1747–1758.CrossRefGoogle Scholar
  23. 23.
    Mahmoud, H. A., Yucek, T., & Arslan, H. (2009). OFDM for cognitive radio: Merits and challenges. IEEE Wireless Communications, 16(2), 6–15.CrossRefGoogle Scholar
  24. 24.
    Weiss, T. A., & Jondral, F. K. (2004). Spectrum pooling: An innovative strategy for the enhancement of spectrum efficiency. IEEE Communications Magazine, 42(3), S8–14.CrossRefGoogle Scholar
  25. 25.
    Bogucka, H., Kryszkiewicz, P., & Kliks, A. (2015). Dynamic spectrum aggregation for future 5G communications. IEEE Communications Magazine, 53(5), 35–43.CrossRefGoogle Scholar
  26. 26.
    Sutton, P., Ozgul, B., Macaluso, I., & Doyle, L. (2010). OFDM pulse-shaped waveforms for dynamic spectrum access networks. In Proceedings of IEEE DYSPAN (pp. 1–2).Google Scholar
  27. 27.
    Mahmoud, H. A., & Arslan, H. (2008). Sidelobe suppression in OFDM-based spectrum sharing systems using adaptive symbol transition. IEEE Communications Letters, 12(2), 133–135.CrossRefGoogle Scholar
  28. 28.
    Rahmatallah, Y., & Mohan, S. (2013). Peak-to-average power ratio reduction in OFDM systems: A survey and taxonomy. IEEE Communications Surveys & Tutorials, 15(4), 1567–1592.CrossRefGoogle Scholar
  29. 29.
    Fettweis, G., Krondorf, M., & Bittner, S. (2009). GFDM—Generalized frequency division multiplexing. In Proceedings of IEEE VTC Spring (pp. 1–4).Google Scholar
  30. 30.
    Yucek, T., & Arslan, H. (2008). Delay spread and time dispersion estimation for adaptive OFDM systems. IEEE Transactions on Vehicular Technology, 57(3), 1715–1722.CrossRefGoogle Scholar
  31. 31.
    Chowdhury, K. R., & Akyildiz, I. F. (2011). OFDM-based common control channel design for cognitive radio ad hoc networks. IEEE Transactions on Mobile Computing, 10(2), 228–238.CrossRefGoogle Scholar
  32. 32.
    Lin, Z., Ghosh, M., & Demir, A. (2013). A comparison of MAC aggregation versus PHY bonding for WLANs in TV white spaces. In Proceedings of IEEE PIMRC (pp. 1829–1834).Google Scholar
  33. 33.
    Joshi, S., Pawełczak, P., Cabric, D., & Villasenor J. (2012). Performance of channel bonding for opportunistic spectrum access networks. In Proceedings of IEEE Globecom (pp. 1676–1681).Google Scholar
  34. 34.
    Sasaki, S. & Uchida, T. (2014). Data rate on MD-TCM. IEEE P802.22 Working Group, Doc.:IEEE802.22-14/0142r0.
  35. 35.
    Wei, L. F. (1987). Trellis-coded modulation with multidimensional constellations. IEEE Transactions on Information Theory, 33(4), 483–531.MathSciNetCrossRefGoogle Scholar
  36. 36.
    Popescu, V., Fadda, M., & Murroni, M. (2016). Performance analysis of IEEE 802.22 wireless regional area network in the presence of digital video broadcasting—second generation terrestrial broadcasting services. IET Communications, 10(8), 922–928.CrossRefGoogle Scholar
  37. 37.
    IEEE Standard for Local and Metropolitan Area Networks—Part 11. (2013). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 4: Enhancements for very high throughput for operation in bands below 6 GHz. IEEE Std. 802.11ac-2013.Google Scholar
  38. 38.
    IEEE Standard for Local and Metropolitan Area Networks—Part 11. (2012). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std. 802.11-2012.Google Scholar
  39. 39.
    Macit, M. C., Senol, H., & Erkucuk, S. (2015). Performance investigation of IEEE 802.11af systems under realistic channel conditions. In Proceedings of IEEE IWCMC (pp. 431–435).Google Scholar
  40. 40.
    Sum, C., Zhou, M., Lu, L., Funada, R., Kojima, F., & Harada, H. (2012). IEEE 802.15.4m: The first low rate wireless personal area networks operating in TV white space. In Proceedings of IEEE ICoN (pp. 326–332).Google Scholar
  41. 41.
    Sum, C., Lu, L., Zhou, M. T., Kojima, F., & Harada, H. (2013). Design considerations of IEEE 802.15.4m low-rate WPAN in TV white space. IEEE Communications Magazine, 51(4), 74–82.CrossRefGoogle Scholar
  42. 42.
    Ko, G., Franklin, A. A., You, S. J., Pak, J. S., Song, M. S., & Kim, C. J. (2010). Channel management in IEEE 802.22 WRAN systems. IEEE Communications Magazine, 48(9), 88–94.CrossRefGoogle Scholar
  43. 43.
    Flores, A. B., Guerra, R. E., Knightly, E. W., Ecclesine, P., & Pandey, S. (2013). IEEE 802.11af: A standard for TV white space spectrum sharing. IEEE Communications Magazine, 51(10), 92–100.CrossRefGoogle Scholar
  44. 44.
    Khattab, A., & Bayoumi, M. A. (2015). An overview of IEEE standardization efforts for cognitive radio networks. In Proceedings of IEEE ISCAS (pp. 982–985).Google Scholar
  45. 45.
    Han, N., Shon, S., Chung, J. H., & Kim J. M. (2006). Spectral correlation based signal detection method for spectrum sensing in IEEE 802.22 WRAN systems. In Proceedings of IEEE ICACT (pp. 1765–1770).Google Scholar
  46. 46.
    Kim, H., Kim, J., Yang, S., et al. (2007). An effective MIMO-OFDM transmission scheme for IEEE 802.22 WRAN systems. In Proceedings of IEEE CrownCom (pp. 394–399).Google Scholar
  47. 47.
    Chen, H. S., Gao, W., & Daut, D. G. (2007). Signature based spectrum sensing algorithms for IEEE 802.22 WRAN. In Proceedings of IEEE ICC (pp. 6487–6492).Google Scholar
  48. 48.
    Hu, W., Willkomm, D., Abusubaih, M., Gross, J., et al. (2007). Dynamic frequency hopping communities for efficient IEEE 802.22 operation. IEEE Communications Magazine, 45(5), 80–87.CrossRefGoogle Scholar
  49. 49.
    Al-Zubi, R., Siam, M. Z., & Krunz, M. (2009). Coexistence problem in IEEE 802.22 wireless regional area networks. In Proceedings of IEEE GLOBECOM (pp. 1–6).Google Scholar
  50. 50.
    Po, K., & Takada, J. (2008). Conservative protection criteria for TV broadcasting services from IEEE 802.22 WRAN. In Proceedings of IEEE CrownCom (pp. 1–4).Google Scholar
  51. 51.
    Sengupta, S., Brahma, S., Chatterjee, M., & Shankar, S. (2007). Enhancements to cognitive radio based IEEE 802.22 air-interface. Proceedings of IEEE ICC (pp. 5155–5160).Google Scholar
  52. 52.
    Buchwald, G. J., Kuffner, S. L., Ecklund, L. M., Brown, M., & Callaway, E. H. (2008). The design and operation of the IEEE 802.22.1 disabling beacon for the protection of TV whitespace incumbents. In Proceedings of IEEE DySPAN (pp. 1–6).Google Scholar
  53. 53.
    Hu, W., Gerla, M., Vlantis, G. A., & Pottie, G. J. (2008). Efficient, flexible, and scalable inter-network spectrum sharing and communications in cognitive IEEE 802.22 networks. In Proceedings of IEEE CogART (pp. 1–5).Google Scholar
  54. 54.
    Lim, S., Jung, H., & Song, M. S. (2009). Cooperative spectrum sensing for IEEE 802.22 WRAN system. In Proceedings of IEEE ICCCN (pp. 1–5).Google Scholar
  55. 55.
    Yu-chun, W., Haiguang, W., & Zhang, P. (2009). Protection of wireless microphones in IEEE 802.22 cognitive radio networks. In Proceedings of IEEE ICCW (pp. 1–5).Google Scholar
  56. 56.
    Murty, R., Chandra, R., Moscibroda, T., & Bahl, P. (2012). Senseless: A database-driven white spaces network. IEEE Transactions on Mobile Computing, 11(2), 189–203.CrossRefGoogle Scholar
  57. 57.
    Shi, H., Prasad, R. V., Niemegeers, I. G. M. M., & Rahim, A. (2014). Multi-channel management for D2D communications in IEEE 802.22 WRANs. In Proceedings of IEEE ICC (pp. 1514–1519).Google Scholar
  58. 58.
    Matsumura, T., & Harada, H (2012). Prototype of UHF converter for TV white-space utilization. In Proceedings of IEEE WPMC (pp. 123–127).Google Scholar
  59. 59.
    Goulianos, A. A., Abdullah, N. F., Kong, D., et al. (2014). Evaluation of 802.11 and LTE for automotive applications. In Proceedings of IEEE VTC fall (pp. 1–5).Google Scholar
  60. 60.
    Lan, Z., Mizutani, K., Villardi, G., & Harada, H. (2013). Design and implementation of a Wi-Fi prototype system in TVWS based on IEEE 802.11af. In Proceedings of IEEE WCNC (pp. 750–755).Google Scholar
  61. 61.
    Mizutani, K., Lan, Z., Funada, R., & Harada, H. (2013). IEEE802.11af with partial subcarrier system for effective use of TV white spaces. In Proceedings of IEEE ICCW (pp. 1255–1259).Google Scholar
  62. 62.
    Mizutani, K., Ishizu, K., Matsumura, T., et al. (2015). IEEE 802.11af indoor experiment in UK Ofcom TVWS trial pilot program. In Proceedings of IEEE VTC spring (pp. 1–5).Google Scholar
  63. 63.
    Holland, O., Sastry, N., Ping, S., Knopp, R., et al. (2014). A series of trials in the UK as part of the Ofcom TV white spaces pilot. In 1st international workshop on cognitive cellular systems (CCS), 2014 (pp. 1–5).Google Scholar
  64. 64.
    Holland, O., Ping, S., Sastry, N., Chawdhry, et al. (2015). Some initial results and observations from a series of trials within the Ofcom TV white spaces pilot. In IEEE vehicular technology conference (pp. 1–7).Google Scholar
  65. 65.
    Sawada, H., Mizutani, K., Ishizu, K., et al. (2015). Path loss and throughput estimation and models for an IEEE 802.11af prototype. In Proceedings of IEEE VTC spring (pp. 1–5).Google Scholar
  66. 66.
    Ishizu, K., Hasegawa, K., Mizutani, K., et al. (2014). Field experiment of long-distance broadband communications in TV white space using IEEE 802.22 and IEEE 802.11af. In Proceedings of IEEE WPMC (pp. 468–473).Google Scholar
  67. 67.
    Sum, C., Kojima, F., & Harada, H. (2013). Energy consumption evaluation for power saving mechanisms in recent IEEE 802.15.4 low-rate wireless personal area networks. In Proceedings of IEEE ICC (pp. 4449–4454).Google Scholar
  68. 68.
    Jang, I., & Hwang, K. (2014). Multi-channel cluster PAN for TVWS band. In Proceedings of IEEE ICNC (pp. 1076–1080).Google Scholar
  69. 69.
    Rabarijaona, V. H., Kojima, F., & Harada, H. (2014). Hierarchical mesh tree protocol for efficient multi-hop data collection. In Proceedings of IEEE WCNC (pp. 2008–2013).Google Scholar
  70. 70.
    B. Kim, Lee, S., Lee, S. S., & Choi, S. (2015). Preamble generation method to improve timing estimation for OFDM system using training sequence. In Proceedings of IEEE ICCE (pp. 142–143).Google Scholar
  71. 71.
    Kim, J., Han, J., Kol, Y. B., & Filali, F. (2015). Interleaving-based orphan channel scanning for the IEEE 802.15.4m in TVWS smart grid networks. Proceedings of IEEE international conference on ubiquitous and future networks (pp. 89–94).Google Scholar
  72. 72.
    Sum, C., Zhou, M. T., Lu, L., Kojima, F., & Harada, H. (2014). Performance and coexistence analysis of multiple IEEE 802 WPAN/WLAN/WRAN systems operating in TV white space. In Proceedings of IEEE DySPAN (pp. 145–148).Google Scholar
  73. 73.
    Ma, J., Harada, H., & Kojima, F. (2015). Proposal and performance evaluation of TVWS-Wi-SUN system. Proceedings of IEEE PIMRC (pp. 2002–2007).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ajit Singh
    • 1
  • Sagar S. Salwe
    • 1
  • K. Krishna Naik
    • 1
  • C. R. S. Kumar
    • 1
  1. 1.Electronics Engineering DepartmentDefence Institute of Advanced TechnologyPuneIndia

Personalised recommendations