Skip to main content

Advertisement

Log in

A Study of Densification Management Using Energy Efficient Femto-Cloud Based 5G Mobile Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Energy efficiency in wireless communication becomes essential. Power optimization of mobile radio systems has gained attention of network operators because energy costs make up a huge part of operational expenditure. In this regard, deployments of low power small cell base stations considerably raise the challenge of energy-efficient cellular networks. Network densification refers to densification over space, for example dense small cell deployment like picocell, femtocell, and frequency utilization of larger segments of radio spectrum in dissimilar bands. In this article we have illustrated the cause factors of densification and described its effects. The deployment layouts of different base stations are studied and compared with conventional macro-femtocell systems from the perspective of area power consumption and signal-to-interference-plus-noise-ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rappaport, T. S. (1996). Wireless communications: Principles and practice (Vol. 2). Upper Saddle River: Prentice Hall PTR.

    MATH  Google Scholar 

  2. Singh, V., & Hideki O. (2017). Throughput improvement by cluster-based multihop wireless networks with energy harvesting relays. In IEEE topical conference on wireless sensors and sensor networks (WiSNet) (pp. 61–64).

  3. Himayat, N., Talwar, S., Rao, A., & Soni, R. (2010). Interference management for 4 g cellular standards [wimax/lte update]. IEEE Communications Magazine, 48(8), 86–92.

    Article  Google Scholar 

  4. http://www.arraycomm.com/technology/coopers-law/. Accessed 6 Dec 2017.

  5. Andrews, J. G., Claussen, H., Dohler, M., Rangan, S., & Reed, M. C. (2012). Femtocells: Past, present, and future. IEEE Journal on Selected Areas in Communications, 30(3), 497–508.

    Article  Google Scholar 

  6. Zhuang, B., Guo, D., & Honig, M. L. (2016). Energy-efficient cell activation, user association, and spectrum allocation in heterogeneous networks. Journal on Selected Areas in Communications IEEE, 34(4), 823–831.

    Article  Google Scholar 

  7. Andrews, J. G., Zhang, X., Durgin, G. D., & Gupta, A. K. (2016). Are we approaching the fundamental limits of wireless network densification? IEEE Communications Magazine, 54(10), 184–190.

    Article  Google Scholar 

  8. Mukherjee, A., De, D., & Deb, P. (2016). Interference management in macro-femtocell and micro-femtocell cluster-based long-term evaluation-advanced green mobile network. IET Communications, 10(5), 468–478.

    Article  Google Scholar 

  9. Lee, P., Lee, T., Jeong, J., & Shin, J. (2010). Interference management in LTE femtocell systems using fractional frequency reuse. In The 12th international conference on advanced communication technology (ICACT) (Vol. 2, pp. 1047–1051). IEEE.

  10. Lee, I. G., & Kim, M. (2016). Interference-aware self-optimizing Wi-Fi for high efficiency internet of things in dense networks. Computer Communications, 89, 60–74.

    Google Scholar 

  11. Richter, F., & Fettweis, G. (2010). Cellular mobile network densification utilizing micro base stations. In 2010 IEEE international conference on communications (ICC) (pp. 1–6). IEEE.

  12. Bogucka, H., Kryszkiewicz, P., & Kliks, A. (2015). Dynamic spectrum aggregation for future 5G communications. IEEE Communications Magazine, 53(5), 35–43.

    Article  Google Scholar 

  13. Bhushan, N., Li, J., Malladi, D., Gilmore, R., Brenner, D., Damnjanovic, A., et al. (2014). Network densification: the dominant theme for wireless evolution into 5G. IEEE Communications Magazine, 52(2), 82–89.

    Article  Google Scholar 

  14. Ashiho, L. S. (2003). Mobile technology: Evolution from 1G to 4G. Electronics For You, 4, 94–98.

    Google Scholar 

  15. Liu, H., Darabi, H., Banerjee, P., & Liu, J. (2007). Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 37(6), 1067–1080.

    Article  Google Scholar 

  16. Fratu, O., Vulpe, A., Craciunescu, R., & Halunga, S. (2014). Small cells in cellular networks: Challenges of future HetNets. Wireless Personal Communications, 78(3), 1613–1627.

    Article  Google Scholar 

  17. Mukherjee, A., Bhattacherjee, S., Pal, S., & De, D. (2013). Femtocell based green power consumption methods for mobile network. Computer Networks, 57(1), 162–178.

    Article  Google Scholar 

  18. Mukherjee, A., Deb, P., & De, D. (2015, February). Green deployment strategy of different generation mobile networks based on spectrum analysis. In 2015 third international conference on computer, communication, control and information technology (C3IT) (pp. 1–6). IEEE.

  19. Deb, P., Mukherjee, A., & De, D. (2017). Study of indoor path loss computational models for femtocell based mobile network. Wireless Personal Communications, 95(3), 3031–3056.

    Article  Google Scholar 

  20. Richter, F., & Fettweis, G. (2010). Cellular mobile network densification utilizing micro base stations.” In 2010 IEEE international conference on communications (ICC) (pp. 1–6). IEEE.

  21. Dinh, H. T., Lee, C., Niyato, D., & Wang, P. (2013). A survey of mobile cloud computing: Architecture, applications, and approaches. Wireless Communications and Mobile Computing, 13(18), 1587–1611.

    Article  Google Scholar 

  22. Chandrasekhar, V., & Andrews, J. G. (2009). Spectrum allocation in tiered cellular networks. IEEE Transactions on Communications, 57(10), 3059–3068.

    Article  Google Scholar 

  23. Ali, S. H., & Leung, V. C. (2009). Dynamic frequency allocation in fractional frequency reused OFDMA networks. IEEE Transactions on Wireless Communications, 8(8), 4286–4295.

    Article  Google Scholar 

  24. Chandrasekhar, V., & Andrews, J. G. (2009). Uplink capacity and interference avoidance for two-tier femtocell networks. IEEE Transactions on Wireless Communications, 8(7), 3498–3509.

    Article  Google Scholar 

  25. Gambiroza, V., Sadeghi, B., & Knightly, E. W. (2004). End-to-end performance and fairness in multihop wireless backhaul networks. In Proceedings of the 10th annual international conference on mobile computing and networking (pp. 287–301). ACM.

  26. Ge, X., Huang, K., Wang, C. X., Hong, X., & Yang, X. (2011). Capacity analysis of a multi-cell multi-antenna cooperative cellular network with co-channel interference. IEEE Transactions on Wireless Communications, 10(10), 3298–3309.

    Article  Google Scholar 

  27. Lei, H., Zhang, L., Zhang, X., & Yang, D. (2007). A novel multi-cell OFDMA system structure using fractional frequency reuse. In . IEEE 18th international symposium on personal, indoor and mobile radio communications, PIMRC 2007 (pp. 1–5). IEEE.

  28. ElSawy, H., Hossain, E., & Haenggi, M. (2013). Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: A survey. IEEE Communications Surveys and Tutorials, 15(3), 996–1019.

    Article  Google Scholar 

  29. Tariq, F., & Dooley, L. S. (2012). Cognitive femtocell networks. In Cognitive communications: Distributed artificial intelligence (DAI), regulatory policy & economics, implementation (pp. 359–394).

  30. Huang, L., Zhu, G., & Du, X. (2013). Cognitive femtocell networks: An opportunistic spectrum access for future indoor wireless coverage. IEEE Wireless Communications, 20(2), 44–51.

    Article  Google Scholar 

  31. Lee, W. Y., & Akyildiz, I. F. (2012). Spectrum-aware mobility management in cognitive radio cellular networks. Transactions on Mobile Computing, IEEE, 11(4), 529–542.

    Article  Google Scholar 

  32. Urgaonkar, R., & Neely, M. J. (2012). Opportunistic cooperation in cognitive femtocell networks. IEEE Journal on Selected Areas in Communications, 30(3), 607–616.

    Article  Google Scholar 

  33. Torregoza, J., Enkhbat, R., & Hwang, W. J. (2010). Joint power control, base station assignment, and channel assignment in cognitive femtocell networks. EURASIP Journal on Wireless Communications and Networking, 2010(1), 285714.

    Google Scholar 

  34. Mukherjee, A., & De, D. (2016). Low power offloading strategy for femto-cloud mobile network. Engineering Science and Technology, an International Journal, 19(1), 260–270.

    Article  Google Scholar 

  35. Verbelen, T., Simoens, P., De Turck, F., & Dhoedt, B. (2012). Cloudlets: Bringing the cloud to the mobile user. In Proceedings of the third ACM workshop on mobile cloud computing and services (pp. 29–36). ACM.

  36. Barbarossa, S., Sardellitti, S., & Di Lorenzo, P. (2013). Joint allocation of computation and communication resources in multiuser mobile cloud computing. In 2013 IEEE 14th workshop on signal processing advances in wireless communications (SPAWC) (pp. 26–30). IEEE.

Download references

Acknowledgements

Department of Science and Technology (DST) for DST-FIST, Reference No.: SR/FST/ETI-296/2011 under which this article has been completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis De.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, P., Mukherjee, A. & De, D. A Study of Densification Management Using Energy Efficient Femto-Cloud Based 5G Mobile Network. Wireless Pers Commun 101, 2173–2191 (2018). https://doi.org/10.1007/s11277-018-5810-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5810-6

Keywords

Navigation