Wireless Personal Communications

, Volume 101, Issue 3, pp 1261–1279 | Cite as

An Analysis of Periodogram Based on a Discrete Cosine Transform for Spectrum Sensing

  • Emad H. Salman
  • Nor K. Noordin
  • Shaiful J. Hashim
  • Fazirulhisyam Hashim
  • Chee K. Ng


One of the complex problems nowadays in communication systems is the lack of frequency spectrum. To solve this problem, cognitive radio is considered the best candidate that can opportunistically exploit the spectrum. The periodogram based spectrum sensing technique can be used to detect the spectrum in cognitive radio. It is a useful technique since does not need to prior information about the primary signal. In this paper, a new periodogram is presented using the Discrete Cosine Transform (DCT). Results are analyzed and compared with the current raw periodogram. It is observed that the DCT periodogram outperforms the raw technique in terms of probabilities of false alarm and detection, variance, and complexity. In addition, the lowest power of DCT coefficients can be removed without compromising the sensing performance. The proposed system shows high probability of detection with low probability of false alarm even in the case of low Signal-to-Noise Ratio (SNR).


Cognitive radio Periodogram Spectrum sensing 



  1. 1.
    Junfeng, X., Hu, R. Q., Yi, Q., Lei, G., & Bo, W. (2013). Expanding LTE network spectrum with cognitive radios: From concept to implementation. IEEE Wireless Communications, 20, 12–19.Google Scholar
  2. 2.
    Yue, W.-J., Zheng, B.-Y., Meng, Q.-M., & Yue, W.-J. (2010). Combined energy detection and one-order cyclostationary feature detection techniques in cognitive radio systems. The Journal of China Universities of Posts and Telecommunications, 17, 18–25.CrossRefGoogle Scholar
  3. 3.
    Fragkiadakis, A. G., Tragos, E. Z., & Askoxylakis, I. G. (2013). A survey on security threats and detection techniques in cognitive radio networks. IEEE Communications Surveys & Tutorials, 15, 428–445.CrossRefGoogle Scholar
  4. 4.
    Salman, E. H., Noordin, N. K., Hashim, S. J., Hashim, F., & Ng, C. K. (2016). An overview of spectrum sensing techniques for cognitive LTE and LTE-A radio systems. Telecommunication Systems, 65, 1–14.Google Scholar
  5. 5.
    Martínez, D. M., & Andrade, Á. G. (2013). Performance evaluation of welch’s periodogram-based energy detection for spectrum sensing. IET Communications, 7, 1117–1125.CrossRefGoogle Scholar
  6. 6.
    Sarvanko, H., Mustonen, M., Hekkala, A., Mammela, A., Matinmikko, M., & Katz, M. (2008). Cooperative and noncooperative spectrum sensing techniques using Welch’s periodogram in cognitive radios. In First international workshop on cognitive radio and advanced spectrum management, 2008. CogART 2008, (pp. 1–5).Google Scholar
  7. 7.
    Matinmikko, M., Sarvanko, H., Mustonen, M., & Mammela, A. (2009). Performance of spectrum sensing using Welch’s periodogram in rayleigh fading channel. In 4th international conference on cognitive radio oriented wireless networks and communications 2009, (pp. 1–5).Google Scholar
  8. 8.
    Gismalla, E. H., & Alsusa, E. (2011). Performance analysis of the periodogram-based energy detector in fading channels. IEEE Transactions on Signal Processing, 59, 3712–3721.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gismalla, E. H., & Alsusa, E. (2012). On the performance of energy detection using Bartlett’s estimate for spectrum sensing in cognitive radio systems. IEEE Transactions on Signal Processing, 60, 3394–3404.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Proakis John, G., & Manolakis Dimitris, G. (1996). Digital signal processing: Principles, algorithms, and applications. Upper Saddle River: Pentice Hall.Google Scholar
  11. 11.
    Kay, S. M. (1998). Fundamentals of statistical signal processing, volume 2: Detection theory. In A. V. Oppenheim (Ed.), Prentice hall signal processing series. Upper Saddle River: Prentice Hall.Google Scholar
  12. 12.
    Stevenson, C., Chouinard, G., Zhongding, L., Wendong, H., Shellhammer, S. J., & Caldwell, W. (2009). IEEE 802.22: The first cognitive radio wireless regional area network standard. IEEE Communications Magazine, 47, 130–138.CrossRefGoogle Scholar
  13. 13.
    Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys & Tutorials, 11, 116–130.CrossRefGoogle Scholar
  14. 14.
    Bhargavi, D., & Murthy, C. R. (2010). Performance comparison of energy, matched-filter and cyclostationarity-based spectrum sensing. In IEEE eleventh international workshop on signal processing advances in wireless communications (SPAWC), 2010, (pp. 1–5).Google Scholar
  15. 15.
    Liang, Y. C., Zeng, Y., Peh, E. C., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE transactions on Wireless Communications, 7(4), 1326–1337.CrossRefGoogle Scholar
  16. 16.
    Chen, K.-C., & Prasad, R. (2009). Cognitive radio networks. Hoboken: Wiley.CrossRefGoogle Scholar
  17. 17.
    Welch, P. D. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15, 70–73.CrossRefGoogle Scholar
  18. 18.
    Ahmed, N., Natarajan, T., & Rao, K. R. (1974). Discrete cosine transform. IEEE Transactions on Computers, C-23, 90–93.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Oppenheim, A. V., Schafer, R. W., & Buck, J. R. (1989). Discrete-time signal processing (Vol. 2). Upper Saddle River, Englewood Cliffs, NJ: Prentice hall.zbMATHGoogle Scholar
  20. 20.
    Bhatial, R. K., Joshi, G., & Anjum, S. R. (2012). Comparison analysis of OFDM signal performance with Cyclic prefix and LDPC codes over AWGN channel. In International conference on advances in engineering, science and management (ICAESM), 2012, (pp. 202–206).Google Scholar
  21. 21.
    Digham, F. F., Alouini, M. S., & Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55, 21–24.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Emad H. Salman
    • 1
    • 2
  • Nor K. Noordin
    • 1
    • 3
  • Shaiful J. Hashim
    • 1
  • Fazirulhisyam Hashim
    • 1
  • Chee K. Ng
    • 4
  1. 1.Department of Computer and Communication Systems Engineering, Faculty of EngineeringUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Communications Engineering, College of EngineeringUniversity of DiyalaBaqubaIraq
  3. 3.Department of Computer and Communication Systems Engineering and Wireless and Photonics Network (WiPNet) Research Center, Faculty of EngineeringUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.Malaysian Reaserch Institute of Aging, Universiti Putra MalaysiaSerdangMalaysia

Personalised recommendations