Skip to main content
Log in

Study of Delay Spread for Simulcast Radio Transmission in Time-Dispersive Mobile Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper analyzes and evaluates the statistical properties of the rms delay spread (delay spread) in a two-path simulcast environment and same frequency in cell repeater. Each path is subjected to multipath fading characterized by wideband Weibull distribution. A novel, unified, and accurate analytical expressions for the probability density function, the cumulative distribution function, the mean, the mean square, and the standard deviation for the delay spread have been derived. The derived expressions are then used to study the implication of the fading and scale parameters on the statistical characteristics of the delay spread. To validate the accuracy of the derived formulas, the analytical results are compared with Monte-Carlo simulation results. Full agreement has been noticed between the simulated and the analytical results over a wide range of received signals levels ratio and different values of the fading parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gray, G. D. (1979). The simulcasting technique: An approach to total-area radio coverage. IEEE Transaction on Vehicular Technology, 28, 117–125.

    Article  Google Scholar 

  2. Desourdis, R. (2001). Emerging public safety wireless communication systems (1st ed.). Norwood: Artech.

    Google Scholar 

  3. Dunlop, J., Girma, D., & Irvine, J. (2013). Digital mobile communications and the TETRA system. New York: Wiley.

    Book  Google Scholar 

  4. Reed, J . H., Rappaport, T . S., & Woerner, B . D. (2012). Wireless personal communications: Advances in coverage and capacity (Vol. 377). Berlin: Springer.

    Google Scholar 

  5. Heath, R., Peters, S., Wang, Y., & Zhang, J. (2013). A current perspective on distributed antenna systems for the downlink of cellular systems. IEEE Communications Magazine, 51(4), 161–167.

    Article  Google Scholar 

  6. Soriaga, J., Au, J., Tang, K., Warner, J., Piekarski, B., Lott, C., & Attar, R. (2013). Improving the capacity of an existing cellular network using distributed antenna systems and right-of-way cell sites. In 2013 IEEE 78th vehicular technology conference (VTC Fall) (pp. 1–7). IEEE.

  7. Carlà, L., Fantacci, R., Gei, F., Marabissi, D., & Micciullo, L. (2015). Lte enhancements for public safety and security communications to support group multimedia communications. arXiv preprint arXiv:1501.03613.

  8. Roh, W. (2003). High performance distributed antenna cellular networks. Ph.D. dissertation, Stanford University.

  9. Molisch, A. F. (1996). Statistical properties of the rms delay-spread of mobile radio channels with independent Rayleigh-fading paths. IEEE Transaction on Vehicular Technology, 45(1), 201–205.

    Article  Google Scholar 

  10. Doumi, T. L., Tsioumparakis, K. H., & Gardiner, J. G. (1995). Delay spread statistics in vicinity of same-frequency repeater. Electronic Letters, 31(18), 1607–1609.

    Article  Google Scholar 

  11. Doumi, T. L., Tsioumparakis, K. H., & Gardiner, J. G. (1996). Delay spread statistics in a two-path radio environment. In The 46th IEEE vehicular technology conference-VTC, 1996 (pp. 642–646).

  12. Wang, X.-D., Rui, G.-S., Xu, H.-Y., & Bu, Z.-Y. (2007). Delay spread statistics in a two-path distributed antenna system with gamma-lognormal fading channels. IEEE Communications Letters, 11(8), 656–658.

    Article  Google Scholar 

  13. Tsioumparakis, K. H., Doumi, T. L., & Gardiner, J. G. (1997). Delay-spread considerations of same-frequency repeaters in wideband channels. IEEE Transactions on Vehicular Technology, 46(3), 664–675.

    Article  Google Scholar 

  14. Alshamali, A., & Al-Oqleh, M. (2002). Delay spread statistics in simulcast transmission system. Electronics Letters, 38(17), 992–994.

    Article  Google Scholar 

  15. Alshamali, A. M., & Al-Oqleh, M. (2005). Statistical properties of the delay spread in a two path mobile radio with Nakagami fading channel. AEU-International Journal of Electronics and Communications, 59(4), 222–229.

    Article  Google Scholar 

  16. Weibull, W. (1951). Wide applicability. Journal of Applied Mechanics, 103, 293–297.

    MATH  Google Scholar 

  17. Sagias, N. C., Zogas, D. A., Karagiannidis, G. K., Tombras, G. S., et al. (2004). Channel capacity and second-order statistics in Weibull fading. IEEE Communications Letters, 8(6), 377–379.

    Article  Google Scholar 

  18. Simon, M. K., & Alouini, M. (2005). Digital communication over fading channels (2nd ed.). New York: Wiley.

    Google Scholar 

  19. Aloqlah, M. S., Alshamali, A., Salman, & T. Bani. (2016). Development of accurate expressions for the estimation of delay spread in simulcast networks under weibull fading. In 2016 international conference on computing, networking and communications (ICNC). IEEE.

  20. Salman, T. B. (2015). Statistical properties of the delay spread in a two-path mobile radio with Weibull fading channel. Master’s thesis, Yarmouk University

  21. Molisch, A. F. (2007). Wireless communications. New York: Wiley.

    Google Scholar 

  22. Mathai, A., & Saxena, R. (1978). The H-function with applications in statistics and other disciplines. New Delhi: Wiley Eastern.

    MATH  Google Scholar 

  23. Yilmaz, F., & Alouini, M.-S. (2009). Product of the powers of generalized Nakagami-m variates and performance of cascaded fading channels. In Proceedings of the global telecommunications conference, GLOBECOM 2009

  24. Papoulis, A., & Pillai, S . U. (1991). Probability, random variables, and stochastic processes. New York: Tata McGraw-Hill Education.

    Google Scholar 

  25. Kilbas, A. A. (2004). H-transforms: Theory and applications. Boca Raton: CRC Press.

    Book  MATH  Google Scholar 

  26. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). Cambridge: Academic Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed S. Aloqlah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Proof of Theorem 1

To obtain a formula for the PDF of the ratio R and under the assumption that the random variables X and Y are statistical independents, the following integral [24, (6.43)]

$$\begin{aligned} {f_R}(r) = \int \limits _0^\infty {y{f_{X}}(yr){f_{Y}}(y)dy} \end{aligned}$$
(19)

has to be expressed in closed form. After substituting (5) and (6) into (19), we get

$$\begin{aligned} {f_R}(r) = \frac{{{k_x}}}{{\lambda _x^{{k_x}}}}\frac{{{k_y}}}{{\lambda _y^{{k_y}}}}{r^{{k_x} - 1}}\int \limits _0^\infty {{y^{{k_x} + {k_y} - 1}}{e^{ - {{\left( {\frac{{yr}}{{{\lambda _x}}}} \right) }^{{k_x}}}}}{e^{ - {{\left( {\frac{y}{{{\lambda _y}}}} \right) }^{{k_y}}}}}dy}. \end{aligned}$$
(20)

Invoking identity [25, 2.9.4], namely, \({e^{ - z}} = H_{0,1}^{1,0}\left[ {z\left| {\begin{array}{c} - \\ {\left( {0,1} \right) } \end{array}} \right. } \right]\), then applying [25, Theorem 2.9], \({f_R}\left( r \right)\) can be expressed in closed form as in (7). Hence, the proof is completed.

Appendix 2: Proof of Lemma 1

The mean rms delay spread can be expressed as

$$\begin{aligned} \left\langle {{\tau _{rms}}} \right\rangle = \int _{ - \infty }^\infty {{\tau _{rms}}(r)} {f_R}\left( r \right) dr. \end{aligned}$$
(21)

Placing (3) in (21) yields

$$\begin{aligned} \left\langle {{\tau _{rms}}} \right\rangle = {\mathrm{{t}}_x}\int _{ - \infty }^\infty {\frac{{\sqrt{{r^4} + \left( {\alpha + 2} \right) {r^2} + \left( {\beta + 1} \right) } }}{{{r^2} + 1}}} {f_R}\left( r \right) dr. \end{aligned}$$
(22)

In order to derive a closed form expression for the above integral, two approximations will be carried out on both the numerator and denominator of \(\tau _{rms}(R)\). Hence, the numerator of \(\tau _{rms}(R)\) can be expressed as [13]

$$\begin{aligned} \tau _{rms}^{Num}(R)= & {} \sqrt{{R^4} + \left( {\alpha + 2} \right) {R^2} + \left( {\beta + 1} \right) } \nonumber \\\approx & {} \left\{ \begin{array}{ll} \frac{{{R^4} + (\alpha + 2){R^2} + (2\beta + 2 + {k_1})}}{{2\sqrt{\beta + 1 + {k_1}} }},&{} \quad 0< R< {R_1} \nonumber \\ \nonumber \\ \frac{{{R^3} + [2(\alpha + 2) + {k_2}]R + (\beta + 1){R^{ - 1}}}}{{2\sqrt{\alpha + 2 + {k_2}} }},&{} \quad {R_1}< R< {R_2}\nonumber \\ \nonumber \\ \frac{{(\alpha + 2) + (\beta + 1){R^{ - 2}} + ({k_3} + 2){R^2}}}{{2\sqrt{1 + {k_3}} }},&{} \quad {R_2} < R \end{array} \right. \\ \end{aligned}$$
(23)

Note that, an appropriate numerical algorithm has been reported in [13] which is utilized in this study in order to estimate the values of the parameters \(k_i\), \(i=1, 2\), and 3 and the values of \(R_i\), \(i=1\) and 2. The denominator can also be expanded with the appropriate Taylor series as [26]

$$\begin{aligned} \tau _{rms}^{Den}(R)= & {} {\left( {{R^2} + 1} \right) ^{ - 1}}\nonumber \\= & {} \left\{ \begin{array}{ll} \sum \limits _{i = 1}^\infty {{{( - 1)}^i}{R^{2(i - 1)}}} ,&{} \quad R < 1\\ \\ \sum \limits _{i = 1}^\infty {{{( - 1)}^i}{R^{ - 2i}}} ,&{} \quad R > 1 \end{array} \right. \end{aligned}$$
(24)

After utilizing the above approximations and splitting the integrals into appropriate partitions, \(\left\langle {{\tau _{rms}}} \right\rangle\) can be expressed as

$$\begin{aligned} \left\langle {{\tau _{rms}}} \right\rangle=\, & {} {t_x}\sum \limits _{i = 1}^\infty {{{( - 1)}^i}\left\{ {{{\left( {2\sqrt{\beta + 1 + {k_1}} } \right) }^{ - 1}} } \right. } \nonumber \\&\times \left[ {\int _0^{{R_1}} {{r^{2i + 2}}{f_R}\left( r \right) dr} } \right. + (\alpha + 2)\int _0^{{R_1}} {{r^{2i}}{f_R}\left( r \right) dr} \nonumber \\&+\,(2\beta + 2 + {k_1})\left. {\int _0^{{R_1}} {{r^{2(i - 1)}}{f_R}\left( r \right) dr} } \right] \nonumber \\&+\frac{1}{{2\sqrt{\alpha + 2 + {k_2}} }}\left[ {\int _{{R_1}}^1 {{r^{2i + 1}}{f_R}\left( r \right) dr} } \right. \nonumber \\&+\left. {\int _1^{{R_2}} {{r^{ - 2i + 3}}{f_R}\left( r \right) dr} } \right] + \frac{{2(\alpha + 2) + {k_2}}}{{2\sqrt{\alpha + 2 + {k_2}} }} \nonumber \\&\times \left[ {\int _{{R_1}}^1 {{r^{2i - 1}}{f_R}\left( r \right) dr} + } \right. \left. {\int _1^{{R_2}} {{r^{ - 2i + 1}}{f_R}\left( r \right) dr} } \right] \nonumber \\&+\frac{{\beta + 1}}{{2\sqrt{\alpha + 2 + {k_2}} }}\left[ {\int _{{R_1}}^1 {{r^{2i - 3}}{f_R}\left( r \right) dr} } \right. \nonumber \\&+\left. {\int _1^{{R_2}} {{r^{ - 2i - 1}}{f_R}\left( r \right) dr} } \right] + {\left( {2\sqrt{1 + {k_3}} } \right) ^{ - 1}}\left[ {\mathop {(\alpha + 2) }} \right. \nonumber \\&\times \int _{{R_2}}^\infty {{r^{ - 2i}}{f_R}\left( r \right) dr} + (\beta + 1)\int _{{R_2}}^\infty {{r^{ - 2(i + 1)}}{f_R}\left( r \right) dr} \nonumber \\&+ \left. {\left. {({k_3} + 2)\int _{{R_2}}^\infty {{r^{ - 2(i - 1)}}{f_R}\left( r \right) dr} } \right] } \right\} . \end{aligned}$$
(25)

Placing (7) in (25), the following integrals with respect to r, namely, \(\mathcal {I}_1\), \(\mathcal {I}_2\), \(\mathcal {I}_3\), and \(\mathcal {I}_4\) appear. Utilizing [25], these integrals can be expressed in closed forms as

$$\begin{aligned} \mathcal {I}_1(m, {R_1})= & {} \int \limits _0^{{R_1}} {{r^m}{f_R}\left( r \right) dr}\nonumber \\= & {} -{k_y}{\left( {\frac{{{\lambda _x}}}{{{\lambda _y}}}} \right) ^{{k_y}}}R_1^{ - \left( {{k_y} - m} \right) } \nonumber \\&\times H_{2,2}^{2,1}\left[ {{{\left( {\frac{{{\lambda _x}}}{{{\lambda _y}}}} \right) }^{{k_y}}}R_1^{ - {k_y}}\left| \begin{array}{l} \phi _1\\ \phi _2 \end{array} \right. } \right] , \end{aligned}$$
(26)

where \(\phi _1=\Big \{ \left( { - \frac{k_y}{k_x},\frac{k_y}{k_x}} \right) ,\left( {1 - {k_y} + m,{k_y}} \right) \Big \}\) and \(\phi _2=\Big \{ \left( { - {k_y} + m,{k_y}} \right) ,\left( {0,1} \right) \Big \}\).

$$\begin{aligned} \mathcal {I}_2(m, {R_1}) & = \int \limits _{{R_1}}^1 {{r^m}{f_R}\left( r \right) dr} \nonumber \\ & = \mathcal {I}_1(m,1) - \mathcal {I}_1(m,{R_1}). \end{aligned}$$
(27)
$$\begin{aligned} \mathcal {I}_3(m, {R_2}) & = \int \limits _1^{{R_2}} {{r^m}{f_R}\left( r \right) dr} \nonumber \\ & = \mathcal {I}_1(m,{R_2}) - \mathcal {I}_1(m,1). \end{aligned}$$
(28)
$$\begin{aligned} \mathcal {I}_4(m, {R_2})=\, & {} \int \limits _{{R_2}}^{\infty } {{r^m}{f_R}\left( r \right) dr} \nonumber \\= & {} -{k_y}{\left( {\frac{{{\lambda _x}}}{{{\lambda _y}}}} \right) ^{{k_y}}}R_2^{ - \left( {{k_y} - m} \right) } \nonumber \\&\times H_{2,2}^{2,1}\left[ {{{\left( {\frac{{{\lambda _x}}}{{{\lambda _y}}}} \right) }^{{k_y}}}R_2^{ - {k_y}}\left| \begin{array}{l} \phi _3\\ \phi _4 \end{array} \right. } \right] , \end{aligned}$$
(29)

where \(\phi _3=\Big \{ \left( {1 - {k_y} + m,{k_y}} \right) ,\left( { - \frac{{{k_y}}}{{{k_x}}},\frac{{{k_y}}}{{{k_x}}}} \right) \Big \}\) and \(\phi _4=\Big \{ \left( {0,1} \right) ,\left( { - {k_y} + m,{k_y}} \right) \Big \}\). Finally, the mean value of the rms delay spread can be written as in (8). Hence, the proof is completed.

Appendix 3: Proof of Lemma 2

Utilizing the basic definition of the generalized moments in conjunction with the unified PDF in (7), that is

$$\begin{aligned} \left\langle {\tau _{rms}^2} \right\rangle= &\, {} \int _{ - \infty }^\infty {\tau _{rms}^2(r)} {f_R}\left( r \right) dr\nonumber \\=\, & {} \mathrm{{t}}_x^2\int _{ - \infty }^\infty {\frac{{{r^4} + \left( {\alpha + 2} \right) {r^2} + \left( {\beta + 1} \right) }}{{{{\left( {{r^2} + 1} \right) }^2}}}} {f_R}\left( r \right) dr\nonumber \\=\, & {} \mathrm{{t}}_x^2\int _{ - \infty }^\infty {\left[ {1 + \frac{{\alpha {r^2} + \beta }}{{{{\left( {{r^2} + 1} \right) }^2}}}} \right] } {f_R}\left( r \right) dr \end{aligned}$$
(30)

The rational expression in the above equation, namely, \({\left( {{r^2} + 1} \right) ^{ - 2}}\) can be expanded with the appropriate Taylor series as [26]

$$\begin{aligned} {\left( {{r^2} + 1} \right) ^{ - 2}} = \left\{ \begin{array}{ll} \sum \limits _{i = 1}^\infty {{{( - 1)}^{i + 1}}i{r^{2(i - 1)}}} ,&{} \quad r < 1\\ \\ \sum \limits _{i = 1}^\infty {{{( - 1)}^{i + 1}}i{r^{ -2(i + 1)}}} ,&{} \quad r > 1 \end{array} \right. \end{aligned}$$
(31)

We rearrange (31) as

$$\begin{aligned} \left\langle {\tau _{rms}^2} \right\rangle= &\, {} \mathrm{{t}}_x^2\left[ {1 + \sum \limits _{i = 1}^\infty {{{( - 1)}^{i + 1}}i} \left\{ {\alpha \left( {\int _0^1 {{r^{2i}}{f_R}\left( r \right) dr} } \right. } \right. } \right. \nonumber \\&+\left. {\int _1^\infty {{r^{ - 2i}}{f_R}\left( r \right) dr} } \right) + \beta \left( {\int _0^1 {{r^{2(i - 1)}}{f_R}\left( r \right) dr } } \right. \nonumber \\&+\left. {\left. {\left. {\int _1^\infty {{r^{ - 2(i + 1)}}{f_R}\left( r \right) dr} } \right) } \right\} } \right] \end{aligned}$$
(32)

Finally, one can easily obtain an expression for the (32) as in (9). Thus, the proof is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloqlah, M.S., Alshamali, A.M. & Salman, T.B. Study of Delay Spread for Simulcast Radio Transmission in Time-Dispersive Mobile Radio Networks. Wireless Pers Commun 101, 1157–1176 (2018). https://doi.org/10.1007/s11277-018-5754-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5754-x

Keywords

Navigation