Advertisement

Wireless Personal Communications

, Volume 101, Issue 2, pp 1157–1176 | Cite as

Study of Delay Spread for Simulcast Radio Transmission in Time-Dispersive Mobile Radio Networks

  • Mohammed S. Aloqlah
  • Ahmad M. Alshamali
  • Tamara Bani Salman
Article
  • 27 Downloads

Abstract

This paper analyzes and evaluates the statistical properties of the rms delay spread (delay spread) in a two-path simulcast environment and same frequency in cell repeater. Each path is subjected to multipath fading characterized by wideband Weibull distribution. A novel, unified, and accurate analytical expressions for the probability density function, the cumulative distribution function, the mean, the mean square, and the standard deviation for the delay spread have been derived. The derived expressions are then used to study the implication of the fading and scale parameters on the statistical characteristics of the delay spread. To validate the accuracy of the derived formulas, the analytical results are compared with Monte-Carlo simulation results. Full agreement has been noticed between the simulated and the analytical results over a wide range of received signals levels ratio and different values of the fading parameters.

Keywords

Rms delay spread Statistical properties Simulcast system Weibull fading 

Notes

References

  1. 1.
    Gray, G. D. (1979). The simulcasting technique: An approach to total-area radio coverage. IEEE Transaction on Vehicular Technology, 28, 117–125.CrossRefGoogle Scholar
  2. 2.
    Desourdis, R. (2001). Emerging public safety wireless communication systems (1st ed.). Norwood: Artech.Google Scholar
  3. 3.
    Dunlop, J., Girma, D., & Irvine, J. (2013). Digital mobile communications and the TETRA system. New York: Wiley.CrossRefGoogle Scholar
  4. 4.
    Reed, J . H., Rappaport, T . S., & Woerner, B . D. (2012). Wireless personal communications: Advances in coverage and capacity (Vol. 377). Berlin: Springer.Google Scholar
  5. 5.
    Heath, R., Peters, S., Wang, Y., & Zhang, J. (2013). A current perspective on distributed antenna systems for the downlink of cellular systems. IEEE Communications Magazine, 51(4), 161–167.CrossRefGoogle Scholar
  6. 6.
    Soriaga, J., Au, J., Tang, K., Warner, J., Piekarski, B., Lott, C., & Attar, R. (2013). Improving the capacity of an existing cellular network using distributed antenna systems and right-of-way cell sites. In 2013 IEEE 78th vehicular technology conference (VTC Fall) (pp. 1–7). IEEE.Google Scholar
  7. 7.
    Carlà, L., Fantacci, R., Gei, F., Marabissi, D., & Micciullo, L. (2015). Lte enhancements for public safety and security communications to support group multimedia communications. arXiv preprint arXiv:1501.03613.
  8. 8.
    Roh, W. (2003). High performance distributed antenna cellular networks. Ph.D. dissertation, Stanford University.Google Scholar
  9. 9.
    Molisch, A. F. (1996). Statistical properties of the rms delay-spread of mobile radio channels with independent Rayleigh-fading paths. IEEE Transaction on Vehicular Technology, 45(1), 201–205.CrossRefGoogle Scholar
  10. 10.
    Doumi, T. L., Tsioumparakis, K. H., & Gardiner, J. G. (1995). Delay spread statistics in vicinity of same-frequency repeater. Electronic Letters, 31(18), 1607–1609.CrossRefGoogle Scholar
  11. 11.
    Doumi, T. L., Tsioumparakis, K. H., & Gardiner, J. G. (1996). Delay spread statistics in a two-path radio environment. In The 46th IEEE vehicular technology conference-VTC, 1996 (pp. 642–646).Google Scholar
  12. 12.
    Wang, X.-D., Rui, G.-S., Xu, H.-Y., & Bu, Z.-Y. (2007). Delay spread statistics in a two-path distributed antenna system with gamma-lognormal fading channels. IEEE Communications Letters, 11(8), 656–658.CrossRefGoogle Scholar
  13. 13.
    Tsioumparakis, K. H., Doumi, T. L., & Gardiner, J. G. (1997). Delay-spread considerations of same-frequency repeaters in wideband channels. IEEE Transactions on Vehicular Technology, 46(3), 664–675.CrossRefGoogle Scholar
  14. 14.
    Alshamali, A., & Al-Oqleh, M. (2002). Delay spread statistics in simulcast transmission system. Electronics Letters, 38(17), 992–994.CrossRefGoogle Scholar
  15. 15.
    Alshamali, A. M., & Al-Oqleh, M. (2005). Statistical properties of the delay spread in a two path mobile radio with Nakagami fading channel. AEU-International Journal of Electronics and Communications, 59(4), 222–229.CrossRefGoogle Scholar
  16. 16.
    Weibull, W. (1951). Wide applicability. Journal of Applied Mechanics, 103, 293–297.zbMATHGoogle Scholar
  17. 17.
    Sagias, N. C., Zogas, D. A., Karagiannidis, G. K., Tombras, G. S., et al. (2004). Channel capacity and second-order statistics in Weibull fading. IEEE Communications Letters, 8(6), 377–379.CrossRefGoogle Scholar
  18. 18.
    Simon, M. K., & Alouini, M. (2005). Digital communication over fading channels (2nd ed.). New York: Wiley.Google Scholar
  19. 19.
    Aloqlah, M. S., Alshamali, A., Salman, & T. Bani. (2016). Development of accurate expressions for the estimation of delay spread in simulcast networks under weibull fading. In 2016 international conference on computing, networking and communications (ICNC). IEEE.Google Scholar
  20. 20.
    Salman, T. B. (2015). Statistical properties of the delay spread in a two-path mobile radio with Weibull fading channel. Master’s thesis, Yarmouk UniversityGoogle Scholar
  21. 21.
    Molisch, A. F. (2007). Wireless communications. New York: Wiley.Google Scholar
  22. 22.
    Mathai, A., & Saxena, R. (1978). The H-function with applications in statistics and other disciplines. New Delhi: Wiley Eastern.zbMATHGoogle Scholar
  23. 23.
    Yilmaz, F., & Alouini, M.-S. (2009). Product of the powers of generalized Nakagami-m variates and performance of cascaded fading channels. In Proceedings of the global telecommunications conference, GLOBECOM 2009 Google Scholar
  24. 24.
    Papoulis, A., & Pillai, S . U. (1991). Probability, random variables, and stochastic processes. New York: Tata McGraw-Hill Education.Google Scholar
  25. 25.
    Kilbas, A. A. (2004). H-transforms: Theory and applications. Boca Raton: CRC Press.CrossRefzbMATHGoogle Scholar
  26. 26.
    Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). Cambridge: Academic Press.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mohammed S. Aloqlah
    • 1
    • 2
  • Ahmad M. Alshamali
    • 2
  • Tamara Bani Salman
    • 2
  1. 1.Electrical and Electronic Engineering DepartmentHigher Colleges of Technology for WomenDubaiUAE
  2. 2.Telecommunication Engineering DepartmentYarmouk UniversityIrbidJordan

Personalised recommendations