Skip to main content

Advertisement

Log in

Comparison Analysis of Radio_Based and Sensor_Based Wearable Human Activity Recognition Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Human activity recognition (HAR) systems aim to provide low-cost, low-power, unobtrusive and non-invasive solutions to monitor and collect data accurately for human-centric applications, such as health monitoring, assisted living and rehabilitation. Although wearable sensor_based HAR systems have been demonstrated to be effective in the literature, they raise various concerns such as energy consumption and hardware cost. In this work, we examine the pattern of radio signal strength variations in different activity classes in absence of sensor hardware. We present a performance comparison analysis by setting up two testbeds to compare a sensor_based with a radio_based HAR system over a range of variable metrics such as the number of sensor nodes, and the nodes and the sink node placement with respect to the accuracy and the energy efficiency. Wearable HAR datasets are constructed based on our reported testbeds. The main contributions of this work are in two folds: (1) when eliminating the use of accelerometers in the radio_based system, beside the reduced hardware cost, prolonged lifetime of the HAR system by nearly 30% can be achieved while maintaining the accuracy. The impact of the selected overlapping window size (WS) is also investigated with respect to the accuracy level in both systems over a range of activity classes. (2) The impact of the node placement on the accuracy indicates a higher dependency to the number of nodes, the nodes and the sink node placements in the radio_based system due to the dependency of the results to the distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Patel, M., & Wang, J. (2010). Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wireless Communications Magazine, 17(1), 80–88.

    Article  Google Scholar 

  2. Lara, O. D., & Labrador, M. A. (2013). A survey on human activity recognition using wearable sensors. IEEE Communications Surveys and Tutorials, 15(3), 1192–1209.

    Article  Google Scholar 

  3. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.

    Article  Google Scholar 

  4. Del Re, E., Morosi, S., Mucchi, L., Ronga, L. S., & Jayousi, S. (2016). Future wireless systems for human bond communications. Wireless Personal Communications, 88(1), 39–52.

    Article  Google Scholar 

  5. Chu, D., Lane, N. D., Lai, T. T. T., Pang, C., Meng, X., Guo, Q., Li, F., & Zhao, F. (2011). Balancing energy, latency and accuracy for mobile sensor data classification. In Proceedings of the 9th ACM conference on embedded networked sensor systems (pp. 54–67). ACM.

  6. Morillo, L. M. S., Gonzalez-Abril, L., Ramirez, J. A. O., & de la Concepcion, M. A. A. (2015). Low energy physical activity recognition system on smartphones. Sensors, 15(3), 5163–5196.

    Article  Google Scholar 

  7. Yan, Z., Subbaraju, V., Chakraborty, D., Misra, A., & Aberer, K. (2012). Energy-efficient continuous activity recognition on mobile phones: An activity-adaptive approach. In 6th International symposium on wearable computers (ISWC) (pp. 17–24). IEEE.

  8. Anguita, D., Ghio, A., Oneto, L., Llanas Parra, F. X., & Reyes Ortiz, J. L. (2013). Energy efficient smartphone-based activity recognition using fixed-point arithmetic. Journal of Universal Computer Science, 19(9), 1295–1314.

    Google Scholar 

  9. Au, L. K., Batalin, M. A., Stathopoulos, T., Bui, A. A., & Kaiser, W. J. (2009). Episodic sampling: Towards energy-efficient patient monitoring with wearable sensors. In Annual international conference of the IEEE engineering in medicine and biology society, EMBC 2009 (pp. 6901–6905). IEEE.

  10. Gordon, D., Czerny, J., Miyaki, T., & Beigl, M. (2012). Energy-efficient activity recognition using prediction. In 16th International symposium on wearable computers (ISWC) (pp. 29–36). IEEE.

  11. Wang, Y., Lin, J., Annavaram, M., Jacobson, Q. A., Hong, J., Krishnamachari, B., & Sadeh, N. (2009). A framework of energy efficient mobile sensing for automatic user state recognition. In Proceedings of the 7th international conference on mobile systems, applications, and services (pp. 179–192). ACM.

  12. Liang, Y., Zhou, X., Yu, Z., & Guo, B. (2014). Energy-efficient motion related activity recognition on mobile devices for pervasive healthcare. Mobile Networks and Applications, 19(3), 303–317.

    Article  Google Scholar 

  13. Dong, B., Montoye, A., Moore, R., Pfeiffer, K., & Biswas, S. (2013). Energy-aware activity classification using wearable sensor networks. In Proceedings of SPIE—The International Society for Optical Engineering, 8723(87230Y).

  14. Fida, B., Bernabucci, I., Bibbo, D., Conforto, S., & Schmid, M. (2015). Pre-processing effect on the accuracy of event-based activity segmentation and classification through inertial sensors. Sensors, 15(9), 23095–23109.

    Article  Google Scholar 

  15. Bashir, S. A., Doolan, D. C., & Petrovski, A. (2016). The effect of window length on accuracy of smartphone-based activity recognition. IAENG International Journal of Computer Science, 43(1), 126–136.

    Google Scholar 

  16. Montoye, A. H., Pivarnik, J. M., Mudd, L. M., Biswas, S., & Pfeiffer, K. A. (2016). Comparison of activity type classification accuracy from accelerometers worn on the hip, wrists, and thigh in young, apparently healthy adults. Measurement in Physical Education and Exercise Science, 20(3), 173–183.

    Article  Google Scholar 

  17. Bashir, S. A., Doolan, D. C., & Petrovski, A. (2015). The impact of feature vector length on activity recognition accuracy on mobile phone. In Proceedings of the world congress on engineering, WCE, 2015 (Vol. 1).

  18. Zhu, X., & Qiu, H. (2016). High accuracy human activity recognition based on sparse locality preserving projections. PloS one, 11(11), e0166567.

    Article  Google Scholar 

  19. Sharma, A., Lee, Y. D., & Chung, W. Y. (2008). High accuracy human activity monitoring using neural network. In 3rd International conference on convergence and hybrid information technology. ICCIT’08 (pp. 430–435). IEEE.

  20. Koskimki, H. (2015). Avoiding bias in classification accuracy—A case study for activity recognition. In 2015 IEEE symposium series on computational intelligence (pp. 301–306). IEEE.

  21. Rezaie, H., & Ghassemian, M. (2018). Implementation study of wearable sensors for activity recognition systems. In F. J. Velez & D. Miyandoab (Eds.), Wearable technologies and wireless body sensor networks for healthcare. London: IET Publications.

    Google Scholar 

  22. Yan, Z., Subbaraju, V., Chakraborty, D., Misra, A., & Aberer, K. (2012). Energy-efficient continuous activity recognition on mobile phones: An activity-adaptive approach. In 16th International symposium on wearable computers (ISWC) (pp. 17–24). IEEE.

  23. French, B., Siewiorek, D. P., Smailagic, A., & Deisher, M. (2007). Selective sampling strategies to conserve power in context aware devices. In 11th IEEE international symposium on wearable computers, 2007 (pp. 77–80). IEEE.

  24. Ghasemzadeh, H., Guenterberg, E., & Jafari, R. (2009). Energy-efficient information-driven coverage for physical movement monitoring in body sensor networks. IEEE Journal on Selected Areas in Communications, 27(1), 58–69.

    Article  Google Scholar 

  25. Wang, S., & Zhou, G. (2015). A review on radio based activity recognition. Digital Communications and Networks, 1(1), 20–29.

    Article  Google Scholar 

  26. Rezaie, H., & Ghassemian, M. (2015). Implementation study of wearable sensors for activity recognition systems. Healthcare Technology Letters, 2(4), 95–100.

    Article  Google Scholar 

  27. Geng, Y., Chen, J., Fu, R., Bao, G., & Pahlavan, K. (2016). Enlighten wearable physiological monitoring systems: On-body RF characteristics based human motion classification using a support vector machine. IEEE Transactions on Mobile Computing, 15(3), 656–671.

    Article  Google Scholar 

  28. Scholz, M., Riedel, T., Hock, M., & Beigl, M. (2013). Device-free and device-bound activity recognition using radio signal strength. In Proceedings of the 4th augmented human international conference (pp. 100–107). ACM.

  29. Qi, X., Zhou, G., Li, Y., & Peng, G. (2012). RadioSense: Exploiting wireless communication patterns for body sensor network activity recognition. In 33rd IEEE real-time systems symposium (RTSS) (pp. 95–104). IEEE.

  30. Atallah, L., Lo, B., King, R., & Yang, G.-Z. (2011). Sensor positioning for activity recognition using wearable accelerometers. IEEE Transactions on Biomedical Circuits and Systems, 5(4), 320–329.

    Article  Google Scholar 

  31. Yang, A. Y., Jafari, R., Sastry, S. S., & Bajcsy, R. (2009). Distributed recognition of human actions using wearable motion sensor networks. Journal of Ambient Intelligence and Smart Environments, 1(2), 103–115.

    Google Scholar 

  32. Xu, W., Zhang, M., Sawchuk, A. A., & Sarrafzadeh, M. (2012). Robust human activity and sensor location corecognition via sparse signal representation. IEEE Transactions on Biomedical Engineering, 59(11), 3169–3176.

    Article  Google Scholar 

  33. Chavarriaga, R., Bayati, H., & Milln, J. D. (2013). Unsupervised adaptation for acceleration-based activity recognition: Robustness to sensor displacement and rotation. Personal and Ubiquitous Computing, 17(3), 479–490.

    Article  Google Scholar 

  34. Kale, N., Lee, J., Lotfian, R., & Jafari, R. (2012). Impact of sensor misplacement on dynamic time warping based human activity recognition using wearable computers. In Proceedings of the 12th conference on wireless health (pp. 1–8). ACM.

  35. Figo, D., Diniz, P. C., Ferreira, D. R., & Cardoso, J. M. (2010). Preprocessing techniques for context recognition from accelerometer data. Personal and Ubiquitous Computing, 14(7), 645–662.

    Article  Google Scholar 

  36. Huynh, T., & Schiele, B. (2005). Analyzing features for activity recognition. In Proceedings of the 2005 joint conference on smart objects and ambient intelligence: Innovative context-aware services: Usages and technologies (pp. 159–163). ACM.

  37. Stikic, M., Huynh, T., Van Laerhoven, K., & Schiele, B. (2008). ADL recognition based on the combination of RFID and accelerometer sensing. In 2nd International conference on pervasive computing technologies for healthcare. Pervasive Health 2008 (pp. 258–263). IEEE.

  38. Sun, L., Zhang, D., Li, B., Guo, B., & Li, S. (2010). Activity Recognition on an accelerometer embedded mobile phone with varying positions and orientations. In Z. Yu, R. Liscano, G. Chen, D. Zhang & X. Zhou (Eds.), Ubiquitous Intelligence and Computing (UIC 2010). Lecture Notes in Computer Science (Vol. 6406). Berlin, Heidelberg: Springer.

    Google Scholar 

  39. Parkka, J., Ermes, M., Korpipaa, P., Mantyjarvi, J., Peltola, J., & Korhonen, I. (2006). Activity classification using realistic data from wearable sensors. IEEE Transactions on Information Technology in Biomedicine, 10(1), 119–128.

    Article  Google Scholar 

  40. Dernbach, S., Das, B., Krishnan, N. C., Thomas, B. L., & Cook, D. J. (2012). Simple and complex activity recognition through smart phones. In 8th International conference on intelligent environments (IE) (pp. 214–221). IEEE.

  41. Zinnen, A., Wojek, C., & Schiele, B. (2009). Multi activity recognition based on body model-derived primitives. In Location and context awareness (pp. 1–18).

  42. Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., & Amirat, Y. (2015). Physical human activity recognition using wearable sensors. Sensors, 15(12), 31314–31338.

    Article  Google Scholar 

  43. Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182.

    MATH  Google Scholar 

  44. Alpaydin, E. (2014). Introduction to machine learning. Cambridge: MIT press.

    MATH  Google Scholar 

  45. Quinlan, J. R. (2014). C4.5: Programs for machine learning. Amsterdam: Elsevier.

    Google Scholar 

  46. Sun SPOT. (2008). Sun SPOT java development kit. http://www.sunspotworld.com/products. Accessed on 2014

  47. Instruments, T. (2007). CC2420 datasheet. Reference SWRS041B.

  48. Mallinson, M., Drane, P., & Hussain, S. (2007). Discrete radio power level consumption model in wireless sensor networks. In IEEE International conference on mobile adhoc and sensor systems, MASS 2007. (pp. 1–6). IEEE.

  49. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18.

    Article  Google Scholar 

  50. Bao, L., & Intille, S. S. (2004). Activity recognition from user-annotated acceleration data. In International conference on pervasive computing (pp. 1–17). Springer.

  51. Mathie, M. J., Celler, B. G., Lovell, N. H., & Coster, A. C. F. (2004). Classification of basic daily movements using a triaxial accelerometer. Medical and Biological Engineering and Computing, 42(5), 679–687.

    Article  Google Scholar 

  52. Karantonis, D. M., Narayanan, M. R., Mathie, M., Lovell, N. H., & Celler, B. G. (2006). Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Transactions on Information Technology in Biomedicine, 10(1), 156–167.

    Article  Google Scholar 

  53. Olgun, D. O., & Pentland, A. S. (2006), Human activity recognition: Accuracy across common locations for wearable sensors. In Proceedings of 2006 10th IEEE international symposium on wearable computers, Montreux, Switzerland (pp. 11–14).

  54. Parkka, J., Ermes, M., Korpipaa, P., Mantyjarvi, J., Peltola, J., & Korhonen, I. (2006). Activity classification using realistic data from wearable sensors. IEEE Transactions on Information Technology in Biomedicine, 10(1), 119–128.

    Article  Google Scholar 

  55. Pirttikangas, S., Fujinami, K., & Nakajima, T. (2006). Feature selection and activity recognition from wearable sensors. In International symposium on ubiquitious computing systems (pp. 516–527).

  56. Minnen, D., Westeyn, T., Ashbrook, D., Presti, P., & Starner, T. (2007). Recognizing soldier activities in the field. In 4th International workshop on wearable and implantable body sensor networks (BSN 2007) (pp. 236–241). Springer.

  57. Salarian, A., Russmann, H., Vingerhoets, F. J., Burkhard, P. R., & Aminian, K. (2007). Ambulatory monitoring of physical activities in patients with Parkinson’s disease. IEEE Transactions on Biomedical Engineering, 54(12), 2296–2299.

    Article  Google Scholar 

  58. Chen, Y. P., Yang, J. Y., Liou, S. N., Lee, G. Y., & Wang, J. S. (2008). Online classifier construction algorithm for human activity detection using a tri-axial accelerometer. Applied Mathematics and Computation, 205(2), 849–860.

    Article  MathSciNet  Google Scholar 

  59. He, Z. Y., & Jin, L. W. (2008). Activity recognition from acceleration data using AR model representation and SVM. In International conference on machine learning and cybernetics (pp. 2245–2250). IEEE.

  60. Yang, J. Y., Wang, J. S., & Chen, Y. P. (2008). Using acceleration measurements for activity recognition: An effective learning algorithm for constructing neural classifiers. Pattern Recognition Letters, 29(16), 2213–2220.

    Article  Google Scholar 

  61. Yeoh, W. S., Pek, I., Yong, Y. H., Chen, X., & Waluyo, A. B. (2008), August. Ambulatory monitoring of human posture and walking speed using wearable accelerometer sensors. In 30th Annual international conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2008 (pp. 5184–5187).

  62. Bonomi, A. G., Goris, A. H., Yin, B., & Westerterp, K. R. (2009). Detection of type, duration, and intensity of physical activity using an accelerometer. Medicine & Science in Sports & Exercise, 41(9), 1770–1777.

    Article  Google Scholar 

  63. Hanai, Y., Nishimura, J., & Kuroda, T. (2009). Haar-like filtering for human activity recognition using 3D accelerometer. In Digital signal processing workshop and 5th IEEE signal processing education workshop, DSP/SPE 2009 (pp. 675–678). IEEE.

  64. Altun, K., & Barshan, B. (2010). Human activity recognition using inertial/magnetic sensor units. In International workshop on human behavior understanding (pp. 38–51). Springer.

  65. Cheng, J., Amft, O., & Lukowicz, P. (2010). Active capacitive sensing: Exploring a new wearable sensing modality for activity recognition. In International conference on pervasive computing (pp. 319–336). Springer.

  66. Gjoreski, H., Lustrek, M., & Gams, M. (2011), July. Accelerometer placement for posture recognition and fall detection. In 7th International conference on intelligent environments (IE) (pp. 47–54). IEEE.

  67. Chamroukhi, F., Mohammed, S., Trabelsi, D., Oukhellou, L., & Amirat, Y. (2013). Joint segmentation of multivariate time series with hidden process regression for human activity recognition. Neurocomputing, 120, 633–644.

    Article  Google Scholar 

  68. Bayat, A., Pomplun, M., & Tran, D. A. (2014). A study on human activity recognition using accelerometer data from smartphones. Procedia Computer Science, 34, 450–457.

    Article  Google Scholar 

  69. Gao, L., Bourke, A. K., & Nelson, J. (2014). Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems. Medical Engineering & Physics, 36(6), 779–785.

    Article  Google Scholar 

  70. Gupta, P., & Dallas, T. (2014). Feature selection and activity recognition system using a single triaxial accelerometer. IEEE Transactions on Biomedical Engineering, 61(6), 1780–1786.

    Article  Google Scholar 

  71. Moncada-Torres, A., Leuenberger, K., Gonzenbach, R., Luft, A., & Gassert, R. (2014). Activity classification based on inertial and barometric pressure sensors at different anatomical locations. Physiological Measurement, 35(7), 1245.

    Article  Google Scholar 

  72. Mass, F., Gonzenbach, R. R., Arami, A., Paraschiv-Ionescu, A., Luft, A. R., & Aminian, K. (2015). Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients. Journal of Neuroengineering and Rehabilitation, 12(1), 72.

    Article  Google Scholar 

  73. Rezaie, H., & Ghassemian, M. (2017). An adaptive algorithm to improve energy efficiency in wearable activity recognition systems. IEEE Sensors Journal, 17(16), 5315–5323.

    Article  Google Scholar 

  74. Egbogah, E. E., & Fapojuwo, A. O. (2011). A survey of system architecture requirements for health care-based wireless sensor networks. Sensors, 11(5), 4875–4898.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Ghassemian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaie, H., Ghassemian, M. Comparison Analysis of Radio_Based and Sensor_Based Wearable Human Activity Recognition Systems. Wireless Pers Commun 101, 775–797 (2018). https://doi.org/10.1007/s11277-018-5715-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5715-4

Keywords

Navigation