Wireless Personal Communications

, Volume 101, Issue 2, pp 635–648 | Cite as

Energy Efficient QoS Aware Hierarchical KF-MAC Routing Protocol in Manet

  • Meena Rao
  • Neeta Singh


The paper proposes an energy efficient quality of services (QoS) aware hierarchical KF-MAC routing protocol in mobile ad-hoc networks. The proposed KF-MAC (K-means cluster formation firefly cluster head selection based MAC routing) protocol reduces the concentration of QoS parameters when the node transmits data from source to destination. At first, K-means clustering technique is utilized for clustering the network into nodes. Then the clustered nodes are classified and optimized by the firefly optimization algorithm to find cluster heads for the clustered nodes. The transmission of data begins in the network nodes and TDMA based MAC routing does communication. The observation on KF-MAC protocol performs well for QoS parameters such as bandwidth, delay, bit error rate and jitter. The evaluation of proposed protocol based on a simulation study concludes that the proposed protocol provides a better result in contrast to the existing fuzzy based energy aware routing protocol and modified dynamic source routing protocol. With KF-MAC protocol, the collision free data transmission with low average energy consumption is achieved.


MANET QoS Clustering Firefly Cluster head Routing 


  1. 1.
    Zhang, X. M., Wang, E. B., Xia, J., & Sung, D. K. (2013). A neighbor coverage-based probabilistic rebroadcast for reducing routing overhead in mobile ad hoc networks. IEEE Transactions on Mobile Computing, 12(3), 424–433.CrossRefGoogle Scholar
  2. 2.
    Conti, M., & Giordano, S. (2014). Mobile ad hoc networking, milestones, challenges, and new research directions. IEEE Communications Magazine, 52(1), 85–96.CrossRefGoogle Scholar
  3. 3.
    Rao, M., & Singh, N. (2014). An improved routing protocol (AODV nth BR) for efficient routing in MANETs. Advanced Computing, Networking and Informatics, 2(1), 215–223.CrossRefGoogle Scholar
  4. 4.
    Ting, L., & Zhu, J. (2013). Genetic algorithm for energy-efficient QoS multicast routing. IEEE Communications Letters, 17(1), 31–34.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Basurra, S. S., De Vos, M., Padget, J., Ji, Y., Lewis, T., & Armour, S. (2015). Energy efficient zone based routing protocol for MANETs. Ad Hoc Networks, 25, 16–37.CrossRefGoogle Scholar
  6. 6.
    Rao, M., & Singh, N. (2014). Quality of service enhancement in MANETs with an efficient routing algorithm. IEEE International Advance Computing Conference (IACC), 1(1), 381–384.CrossRefGoogle Scholar
  7. 7.
    Das, S. K., & Tripathi, S. (2016). Intelligent energy-aware efficient routing for MANET (pp. 1–21). Wireless Networks: Springer.Google Scholar
  8. 8.
    Nayak, K., & Gupta, N. (2015). Energy efficient consumption based performance of AODV, DSR and ZRP routing protocol in MANET. International Journal of Engineering and Innovative Technology (IJEIT), Energy, 4(11), 82–90.Google Scholar
  9. 9.
    Lupia, A., & De Rango, F. (2015). Evaluation of the energy consumption introduced by a trust management scheme on mobile ad hoc networks. JNW, 10(4), 240–251.CrossRefGoogle Scholar
  10. 10.
    Mohammad, A. A. K., Mirza, A., & Vemuru, S. (2016). Energy aware routing for manets based on current processing state of nodes. Journal of Theoretical and Applied Information Technology, 91(2), 340.Google Scholar
  11. 11.
    Macone, D., Oddi, G., & Pietrabissa, A. (2013). MQ-routing, mobility-, GPS-and energy-aware routing protocol in MANETs for disaster relief scenarios. Ad Hoc Networks, 11(3), 861–878.CrossRefGoogle Scholar
  12. 12.
    Sharma, C., & Kaur, J. (2015). Literature survey of AODV and DSR reactive routing protocols. International Journal of Computer Applications (IJCA), 3(7), 14–17.CrossRefGoogle Scholar
  13. 13.
    Sharma, V., Singh, H., Kaur, M., & Banga, V. (2013). Performance evaluation of reactive routing protocols in MANET networks using GSM based voice traffic applications. Optik-International Journal for Light and Electron Optics, 124(15), 2013–2016.CrossRefGoogle Scholar
  14. 14.
    Varshney, P. K., Agrawal, G. S., & Sharma, S. K. (2016). Relative performance analysis of proactive routing protocols in wireless ad hoc networks using varying node density. Invertis Journal of Science & Technology, 9(3), 161–169.CrossRefGoogle Scholar
  15. 15.
    Dhenakaran, S. S., & Parvathavarthini, A. (2013). An overview of routing protocols in mobile ad-hoc network. International Journal of Advanced Research in Computer Science and Software Engineering, 3(2), 251–259.Google Scholar
  16. 16.
    Ravi, G., & Reemlus, J. D. (2014). Energy aware routing for adhoc networks using dynamic path switching. International Journal of Ad Hoc, Sensor & Ubiquitous Computing, 5(3), 1.CrossRefGoogle Scholar
  17. 17.
    Aggarwal, A., Gandhi, S., & Chaubey, N. (2014). Performance analysis of AODV, DSDV and DSR in MANETS. ArXiv preprint, 2(6), 167–168.
  18. 18.
    Mounica, M., & Kumar, S. V. (2015). Multicast routing In MANETS. International Journal of Science Engineering and Advance Technology, IJSEAT, 3(10), 694–697.Google Scholar
  19. 19.
    Abdulwahid, H., Dai, B., Huang, B., & Chen, Z. (2016). Scheduled-links multicast routing protocol in MANETs. Journal of Network and Computer Applications, 63, 56–67.CrossRefGoogle Scholar
  20. 20.
    Subramaniam, K., & Tamilselvan, L. (2015). Predictive energy efficient and reliable multicast routing in MANET. Research Journal of Applied Sciences, Engineering and Technology, 9(9), 706–714.CrossRefGoogle Scholar
  21. 21.
    Weiqiang, X., Cheng, W., Zhang, Y., Shi, Q., & Wang, X. (2017). On the optimization model for multi-hop information transmission and energy transfer in TDMA-based wireless sensor networks. IEEE Communications Letters, 21(5), 1095–1098.CrossRefGoogle Scholar
  22. 22.
    Mohsin, A. H., Bakar, K. A., & Zainal, A. (2017). Optimal control overhead based multi-metric routing for MANET. Wireless Networks, 3(12), 1–17.Google Scholar
  23. 23.
    Muthusenthil, B., & Murugavalli, S. (2017). Privacy preservation and protection for cluster based geographic routing protocol in MANET. Wireless Networks, 23(1), 79–87.CrossRefGoogle Scholar
  24. 24.
    Gomathi, K., Parvathavarthini, B., & Saravanakumar, C. (2017). An efficient secure group communication in MANET using fuzzy trust based clustering and hierarchical distributed group key management. Wireless Personal Communications, 97(4), 1–14.Google Scholar
  25. 25.
    Ubarhande, S. D., Doye, D. D., & Nalwade, P. S. (2017). A secure path selection scheme for mobile ad hoc network. Wireless Personal Communications, 97(2), 1–10.CrossRefGoogle Scholar
  26. 26.
    Yarnagula, H. K., Deka, S. K., & Sarma, N. (2017). A cross-layer based location-aware forwarding using distributed TDMA MAC for ad-hoc cognitive radio networks. Wireless Personal Communications, 95(4), 1–18.CrossRefGoogle Scholar
  27. 27.
    Suresh, H. N., Varaprasad, G., & Jayanthi, G. (2014). Notice of violation of IEEE publication principles designing energy routing protocol with power consumption optimization in MANET. IEEE Transactions on Emerging Topics in Computing, 2(2), 192–197.CrossRefGoogle Scholar
  28. 28.
    Varaprasad, G., & Narayanagowda, S. H. (2014). Implementing a new power aware routing algorithm based on existing dynamic source routing protocol for mobile ad hoc networks. IEEE, IET Networks, 3(2), 137–142.CrossRefGoogle Scholar
  29. 29.
    Li, X., Liu, T., Liu, Y., & Tang, Y. (2014). Optimized multicast routing algorithm based on tree structure in MANETs. IEEE, China Communications, 11(2), 90–99.CrossRefGoogle Scholar
  30. 30.
    Jain, J., Gupta, R., & Tushar, B. K. (2014). Performance analysis of proposed local link repair schemes for ad hoc on demand distance vector. IEEE, IET Networks, 3(2), 129–136.CrossRefGoogle Scholar
  31. 31.
    Krishna, V. P., Saritha, V., Vedha, G., Bhiwal, A., & Chawla, A. S. (2012). Quality-of-service-enabled ant colony-based multipath routing for mobile ad hoc networks. IET Communications, 6(1), 76–83.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Elangasinghe, M. A., Singhal, N., Dirks, K. N., Salmond, J. A., & Samarasinghe, S. (2014). Complex time series analysis of PM 10 and PM 2.5 for a coastal site using artificial neural network modeling and k-means clustering. Atmospheric Environment, 94, 106–116.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringMaharaja Surajmal Institute of TechnologyNew DelhiIndia
  2. 2.Department of Computer Science and Engineering, School of ICTGautam Buddha UniversityGreater NoidaIndia

Personalised recommendations