Advertisement

Wireless Personal Communications

, Volume 101, Issue 1, pp 223–237 | Cite as

Fast Symbol Detection for Massive G-STBC MIMO Systems

  • Hoang-Yang Lu
  • Mao-Hsu Yen
  • Bo-Sing Chen
  • Ruo-Ya Huang
  • Shun-Hsyung Chang
  • Ivan A. Parinov
Article
  • 49 Downloads

Abstract

In this paper, a group-based fast symbol detection scheme is proposed for massive Group-wise Space–Time Block Code Multiple-Input Multiple-Output systems. The proposed scheme first chooses a number G, (e.g. \(G=4,6,8\)) as the size of each group and then conducts the Minimum Mean Square Error (MMSE) detectors to facilitate symbol detection group by group. In particular, instead of directly using huge computational complexity to compute the MMSE detectors, the proposed scheme recursively finds the corresponding assistant matrices to determine the groups and calculate the MMSE detectors. As a result, the transmitted symbols can be recursively estimated group by group. Finally, simulation results and complexity analysis show the proposed scheme performs very close to the existing methods, while using lower computational complexity.

Keywords

V-BLAST Massive MIMO MMSE STBC 

Notes

Acknowledgements

This work was supported by Ministry of Science and Technology of R.O.C. under Contract MOST 105-2923-E-022-001-MY3.

References

  1. 1.
    Chang, B. J., Liang, Y. H., Jhuang, K. P., & Tsai, T. S. (2014) Cross-layer channel selection and reward-based power allocation for maximizing system capacity and reward in 4G MIMO wireless communications. In Proceedings of ISEEE, April, 2014 (pp. 1793–1797).  https://doi.org/10.1109/InfoSEEE.2014.6946231.
  2. 2.
    Bogale, T. E., & Le, L. B. (2016). Massive MIMO and mmWave for 5G wireless HetNet potential benefits and challenges. IEEE Transactions on Vehicular Technology, 11(1), 64–75.Google Scholar
  3. 3.
    Hengzhi, W., Wei, W., Xiaoming, C., & Zhaoyang, Z. (2014) Wireless information and energy transfer in interference aware massive MIMO systems. In Proceedings of IEEE global communications conference, December, 2014 (pp. 2556–2561).  https://doi.org/10.1109/GLOCOM.2014.7037192.
  4. 4.
    Men, H., & Jin, M. (2014). A low-complexity ML detection algorithm for spatial modulation systems with \(M\)PSK constellation. IEEE Communications Letters, 18(8), 1375–1378.CrossRefGoogle Scholar
  5. 5.
    Trimeche, A., Boukid, N., Sakly, A., & Mtibaa, A. (2012). Performance analysis of ZF and MMSE equalizers for MIMO systems. In Proceedings of international conference on DTIS (pp. 1–6).  https://doi.org/10.1109/DTIS.2012.6232979.
  6. 6.
    Wolniansky, P. W., Foschini, G. J., Golden, G. D., & Valenzuela, R. A. (1998). V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel. In International symposium on signals, systems and electronics, October, 1998 (pp. 295–300).  https://doi.org/10.1109/ISSSE.1998.738086.
  7. 7.
    Benesty, J., Huang, Y., & Chen, J. (2003). A fast recursive algorithm for optimum sequential signal detection in a BLAST system. IEEE Transactions on Signal Processing, 51(7), 1722–1730.CrossRefGoogle Scholar
  8. 8.
    Zhu, H., Chen, W., Li, B., & Gao, F. (2011). A fast recursive algorithm for G-STBC. IEEE Transactions on Communications, 59(8), 2084–2089.CrossRefGoogle Scholar
  9. 9.
    Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16(8), 1451–1458.CrossRefGoogle Scholar
  10. 10.
    Proakis, J. G., & Salehi, M. (2008). Digital communications (5th ed.). New York: McGraw-Hill.Google Scholar
  11. 11.
    Henderson, H. V., & Searle, S. R. (1981). On deriving the inverse of a sum of matrices. SIAM Review, 23(1), 53–60.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Golub, G. H., & Van Loan, C. F. (1996). Matrix computations (3rd ed.). Baltimore: Johns-Hopkins University Press.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hoang-Yang Lu
    • 1
  • Mao-Hsu Yen
    • 2
  • Bo-Sing Chen
    • 1
  • Ruo-Ya Huang
    • 1
  • Shun-Hsyung Chang
    • 3
  • Ivan A. Parinov
    • 4
  1. 1.Department of Electrical EngineeringNational Taiwan Ocean UniversityKeelungTaiwan, ROC
  2. 2.Department of Computer Science and EngineeringNational Taiwan Ocean UniversityKeelungTaiwan, ROC
  3. 3.Department of Microelectronics EngineeringNational Kaohsiung Marine UniversityKaohsiungTaiwan, ROC
  4. 4.Vorovich Mechanics and Applied Mathematics Research InstituteSouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations