Multiband Flexible Antenna for Wearable Personal Communications

  • Miguel Ángel Bolaños-Torres
  • Richard Torrealba-Meléndez
  • Jesús Manuel Muñoz-Pacheco
  • Luz del Carmen Goméz-Pavón
  • Edna Iliana Tamariz-Flores


In this paper the design and experimental characterization of a coplanar waveguide-feed planar inverted F antenna for wearable personal communications are presented. The proposed antenna is designed to operate at GSM 1800 MHz and ISM 2450 MHz bands. Experimental measurements of the reflection coefficient are achieved by considering two scenarios: the antenna under bending conditions and when it is placed on different textile materials for weareable applications. Moreover the measured radiation patterns and peak gains are obtained in bending and no bending conditions. The results demonstrate that the reflection coefficient is maintained below − 10 dB, the bandwidth is approximately to 10%, and the radiation properties are suitable when the bend is less than or equal to 80\(^{\circ }\).


Antennas Flexible substrate Weareable Personal communications 



This work was partially supported by projects Cuerpo Académico BUAP-CA-276, and VIEP-BUAP 2017. We also thanks to the Laboratory of Characterization of Systems Based on Microwaves at FCE-BUAP where all experimental characterizations were carried out. J. M. Munoz-Pacheco acknowledges CONACYT for the financial support (no. 258880: Proyecto Apoyado por el Fondo Sectorial de Investigación para la Educación).


  1. 1.
    Yu, Z., & Guo, G. (2016). Improvement of positioning technology based on RSSI in ZigBee networks. Wireless Personal Communications,. Scholar
  2. 2.
    Ancillotti, E., Bruno, R., & Conti, M. (2013). The role of communication systems in smart grids: Architectures, technical solutions and research challenges. Computer Communications, 36(1718), 1665–1697.CrossRefGoogle Scholar
  3. 3.
    Wang, L. H., Chen, T. Y., Lin, K. H., Fang, Q., & Lee, S. Y. (2015). Implementation of a wireless ECG acquisition SoC for IEEE 802.15.4 (ZigBee) applications. IEEE Journal of Biomedical and Health Informatics, 19(1), 247–255.CrossRefGoogle Scholar
  4. 4.
    Kizil, C. H., Diou, C., Tanougast, C., & Singer, D. (2016). Hardware implementation of UWB-IR transceiver and receiver based on wavelet packet transform for networked bio-sensors. In International conference on bio-engineering for smart technologies (BioSMART), Dubai, United Arab Emirates, pp. 1–4.Google Scholar
  5. 5.
    Gentili, M., Sannino, R., & Petracca, M. (2016). BlueVoice: Voice communications over Bluetooth Low Energy in the Internet of Things scenario. Computer Communications,. Scholar
  6. 6.
    Dehghani, M., Arshad, K., & MacKenzie, R. (2015). LTE-advanced radio access enhancements: A survey. Wireless Personal Communications,. Scholar
  7. 7.
    Chang, B. J., & Liou, S. H. (2017). Adaptive cooperative communication for maximizing reliability and reward in ultra-dense small cells LTE-A toward 5G cellular networking. Computer Networks,. Scholar
  8. 8.
    Gao, Y., Qin, Z., Feng, Z., Zhang, Q., Holland, O., & Dohler, M. (2016). Scalable and reliable IoT enabled by dynamic spectrum management for M2M in LTE-A. IEEE Internet of Things Journal, 3(6), 1135–1145.CrossRefGoogle Scholar
  9. 9.
    Mertz, L. (2016). Convergence revolution comes to wearables: Multiple advances are taking biosensor networks to the next level in health care. IEEE Pulse, 7(1), 13–17.CrossRefGoogle Scholar
  10. 10.
    Rachim, V. P., & Chung, W. Y. (2016). Wearable noncontact armband for mobile ECG monitoring system. IEEE Transactions on Biomedical Circuits and Systems, 10(6), 1112–1118.CrossRefGoogle Scholar
  11. 11.
    Sardini, E., Serpelloni, M., & Pasqui, V. (2015). Wireless wearable T-shirt for posture monitoring during rehabilitation exercises. IEEE Transactions on Instrumentation and Measurement, 64(2), 439–448.CrossRefGoogle Scholar
  12. 12.
    Afyf, A., Bellarbi, L., Achour, A., Yaakoubi, N., Errachid, A., & Sennouni, M. A. (2016). UWB thin film flexible antenna for microwave thermography for breast cancer detection. In International conference on electrical and information technologies (ICEIT), Tangiers, pp. 425–429.Google Scholar
  13. 13.
    Jung, Y. H., et al. (2016). A compact parylene-coated WLAN flexible antenna for implantable electronics. IEEE Antennas and Wireless Propagation Letters, 15, 1382–1385.CrossRefGoogle Scholar
  14. 14.
    Bong, F. L., Lim, E. H., & Lo, F. L. (2017). Flexible folded-patch antenna with serrated edges for metal-mountable UHF RFID tag. IEEE Transactions on Antennas and Propagation, 65(2), 873–877.CrossRefGoogle Scholar
  15. 15.
    Hong, S., Kang, S. H., Kim, Y., & Jung, C. W. (2016). Transparent and flexible antenna for wearable glasses applications. IEEE Transactions on Antennas and Propagation, 64(7), 2797–2804.CrossRefGoogle Scholar
  16. 16.
    Ahmed, S., Tahir, F. A., Shamim, A., & Cheema, H. M. (2015). A compact kapton-based inkjet-printed multiband antenna for flexible wireless devices. IEEE Antennas and Wireless Propagation Letters, 14, 1802–1805.CrossRefGoogle Scholar
  17. 17.
    Alqadami, A. S. M., & Jamlos, M. F. (2014). Design and development of a flexible and elastic UWB wearable antenna on PDMS substrate. In IEEE Asia-Pacific conference on applied electromagnetics (APACE), pp. 27–30.Google Scholar
  18. 18.
    Subramaniam, S., Dhar, S., Patra, K., & et al. (2014). Miniaturization of wearable electro-textile antennas using Minkowski fractal geometry. In IEEE antennas and propagation society international symposium (APSURSI), pp. 309–310.Google Scholar
  19. 19.
    Trajkovikj, J., Zurcher, J., & Skrivervik, A. (2014). Soft and flexible UHF antennas for W-BAN application. In IEEE antennas and propagation society international symposium (APSURSI), pp. 305–306.Google Scholar
  20. 20.
    Fernndez-Prades, C., Rogier, H., Collado, A., & Tentzeris, M. M. (2012). Flexible substrate antennas. International Journal of Antennas and Propagation,. Scholar
  21. 21.
    Al, Ja’afreh S., Huang, Y., & Xing, L. (2016). Low profile and wideband planar inverted-F antenna with polarisation and pattern diversities. IET Microwaves, Antennas & Propagation, 10(2), 152–161.CrossRefGoogle Scholar
  22. 22.
    Loizou, L., Buckley, J., & O’Flynn, B. (2013). Design and analysis of a dual-band inverted-F antenna with orthogonal frequency-controlled radiation planes. IEEE Transactions on Antennas and Propagation, 61(8), 3946–3951.CrossRefGoogle Scholar
  23. 23.
    El-sheakh, D. M., & Safwat, A. M. E. (2012). Multi-band CPW-fed printed IFA. In IEEE Antennas and Propagation Society International Symposium (APSURSI), pp. 1–2.Google Scholar
  24. 24.
    Islam, M. S., Esselle, K. P., Sabrin, S., Morshed, K. M., & Matekovits, L. (2015). A serpentine PIFA antenna for implantable RFID tag. In International symposium on antennas and propagation (ISAP), Hobart, TAS, pp. 1–3.Google Scholar
  25. 25.
    Naser, A. A., Sayidmarie, K. H., & Aziz, J. S. (2016). Design and implementation of a PIFA antenna for multi-band LTE handset applications. In Loughborough antennas & propagation conference (LAPC), Loughborough, pp. 1–5.Google Scholar
  26. 26.
    Abbosh, A., Al-Rizzo, H., Abushamleh, S., Bihnam, A., & Khaleel, H. R. (2014). Flexible CPW-IFA antenna for wearable electronic devices. In IEEE antennas and propagation society international symposium (APSURSI), pp. 1–2.Google Scholar
  27. 27.
    Simons, R. N. (2001). Coplanar waveguide circuits, components, and systems. New York: Wiley.CrossRefGoogle Scholar
  28. 28.
    Wadell, B. C. (1991). Transmission line design handbook. Norwood: Artech House.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Electronics SciencesBenemérita Universidad Autónoma de PueblaPueblaMexico
  2. 2.Faculty of Computational SciencesBenemérita Universidad Autónoma de PueblaPueblaMexico

Personalised recommendations