Wireless Personal Communications

, Volume 101, Issue 1, pp 59–74 | Cite as

Geometrical Modeling of Scattering Environment for Highways in Umbrella Cell Based MIMO Communication Systems

  • M. Yaqoob Wani
  • M. Riaz
  • Noor M. Khan


In this paper, we develop a three-dimensional (3D) eccentricity-based cylindrical geometrical channel model for nonisotropic multiple-input-multiple-output (MIMO) communication systems under umbrella macrocellular environment. We use elliptic cylindrical geometry to model the scattering phenomenon in streets, canyons and highways. The scattering objects like, high-rise building, trees and vegetation that lie along the roadside premises are modeled by the height of an elliptical cylinder. The proposed channel model targets fast moving vehicles on the highways in an umbrella-cell of cellular communication networks. We assume that both ends of the communication link are equipped with multiple antenna arrays, where, mobile-station antenna height is lower than base-station antenna. Utilizing the proposed MIMO communication channel model, we obtain closed-form expressions for the space–time correlation function among the MIMO antenna elements. The obtained theoretical expressions are plotted and analyzed for different values of channel parameters. Finally, we compare the proposed model with the existing models in the literature and prove that our model can be deduced to the existing two-dimensional and 3D channel models.


Umbrella cell Correlation function MIMO capacity Channel modeling Cylinder 



  1. 1.
    Abdi, A., Barger, J. A., & Kaveh, M. (2002). A parametric model for the distribution of the angle of arrival and the associated correlation function and power spectrum at the mobile station. IEEE Transactions on Vehicular Technology, 51(3), 425–434.CrossRefGoogle Scholar
  2. 2.
    Abdi, A., & Kaveh, M. (2002). A space–time correlation model for multielement antenna systems in mobile fading channels. IEEE Journal on Selected Areas in Communications, 20(3), 550–560.CrossRefGoogle Scholar
  3. 3.
    Ahmed, A., Nawaz, S. J., Khan, N. M., Patwary, M. N., & Abdel-Maguid, M. (2015). Angular characteristics of a unified 3-D scattering model for emerging cellular networks. In Proceedings of IEEE international conference on communications (ICC), IEEE (pp. 2450–2456).Google Scholar
  4. 4.
    Awasthi, B. (2014). Hand off problem analysis in personal communication system using splitted-rating channel technique. International Journal of Scientific and Technology Research, 3, 13–14.Google Scholar
  5. 5.
    Baltzis, K. (2008). On the geometric modeling of the uplink channel in a cellular system. Journal of Engineering Science and Technology Review, 1(1), 1.Google Scholar
  6. 6.
    Boban, M., Vinhoza, T. T., Ferreira, M., Barros, J., & Tonguz, O. K. (2011). Impact of vehicles as obstacles in vehicular ad hoc networks. IEEE Journal on Selected Areas in Communications, 29(1), 15–28.CrossRefGoogle Scholar
  7. 7.
    Borhani, A., Patzöld, M. (2011). Time-of-arrival, angle-of-arrival, and angle-of-departure statistics of a novel simplistic disk channel model. In Proceedings of international conference on signal processing and communication systems (ICSPCS), IEEE, (pp. 1–7).Google Scholar
  8. 8.
    Cheng, X., He, Y., & Guizani, M. (2017). 3-D geometrical model for multi-polarized MIMO systems. IEEE Access, X(X), 1–20.Google Scholar
  9. 9.
    Cheng, X., Wang, C. X., & Laurenson, D. I. (2007). A generic space-time-frequency correlation model and its corresponding simulation model for narrowband MIMO channels. In: Proceedings of European conference on antennas propagation, IET (pp. 1–6).Google Scholar
  10. 10.
    Chung, Y. U., & Cho, D. (2001). Velocity estimation using adaptive array antennas. In: Proceedings of IEEE vehicular technology conference (Vol. 4, pp. 2565–2569).Google Scholar
  11. 11.
    Chung, Y. U., Lee, D. J., Cho, D. H., & Shin, B. C. (2002). Macrocell/microcell selection schemes based on a new velocity estimation in multitier cellular system. IEEE Transactions on Vehicular Technology, 51(5), 893–903.CrossRefGoogle Scholar
  12. 12.
    Clarke, R. H., & Khoo, W. L. (1997). 3-D mobile radio channel statistics. IEEE Transactions on Vehicular Technology, 46(3), 798–799.CrossRefGoogle Scholar
  13. 13.
    Crichton, P., Oberoi, R. S., & Thomas, H. (1998). Handover based on measured time of signals received from neighboring cells. US Patent 5,722,072.Google Scholar
  14. 14.
    Ekiz, N., Salih, T., Kucukoner, S., & Fidanboylu, K. (2005). An overview of handoff techniques in cellular networks. International Journal of Information Technology, 2(3), 132–136.Google Scholar
  15. 15.
    Ertel, R. B., & Reed, J. H. (1999). Angle and time of arrival statistics for circular and elliptical scattering models. IEEE Journal on Selected Areas in Communications, 17(11), 1829–1840.CrossRefGoogle Scholar
  16. 16.
    Feng, L., Fan, P., Wang, C., & Ghazal, A. (2015) A 3D GBSM for high-speed train communication systems under deep cutting scenarios. In Proceedings of international workshop on high mobility wireless communications (HMWC), IEEE, (pp. 86–90).Google Scholar
  17. 17.
    Gesbert, D., Bolcskei, H., Gore, D. A., & Paulraj, A. J. (2002). Outdoor MIMO wireless channels: Models and performance prediction. IEEE Transactions on Communications, 50(12), 1926–1934.CrossRefGoogle Scholar
  18. 18.
    Ghazal, A., Wang, C. X., Ai, B., Yuan, D., & Haas, H. (2015). A nonstationary wideband MIMO channel model for high-mobility intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems, 16(2), 885–897.Google Scholar
  19. 19.
    Goldsmith, A., Jafar, S. A., Jindal, N., & Vishwanath, S. (2002). Fundamental capacity of MIMO channels. IEEE Journal on Selected Areas in Communications, 21, 684–702.CrossRefGoogle Scholar
  20. 20.
    Goldsmith, A., Jafar, S. A., Jindal, N., & Vishwanath, S. (2003). Capacity limits of MIMO channels. IEEE Journal on Selected Areas in Communications, 21(5), 684–702.CrossRefzbMATHGoogle Scholar
  21. 21.
    Gradshtejn, I. S., & Ryzhik, I. M. (1965). Table of integrals, series and products. London: Academic.zbMATHGoogle Scholar
  22. 22.
    Hampton, J. R., Hammons, R. A, Jr., Cruz, M. A., Merheb, N. M., Paunil, D. E., & Ouyang, F. (2011). Multiple-input multiple-output(mimo) channel measurements for urban military applications. Johns Hopkins APL Technical Digest, 30(2), 135–143.Google Scholar
  23. 23.
    Hong, D., & Rappaport Stephen, S. (1986). Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and nonprioritized handoff procedures. IEEE Transactions on Vehicular Technology, 35(3), 77–92.CrossRefGoogle Scholar
  24. 24.
    Ivanov, K., & Spring, G. (1995). Mobile speed sensitive handover in a mixed cell environment. Proceedings of IEEE Vehicular Technology Conference, 2, 892–896.Google Scholar
  25. 25.
    Jaafar, I., Boujemâa, H., & Siala, M. (2008). Angle and time of arrival statistics for hollow-disc and elliptical scattering models. In Proceedings of 2nd international conference signals, circuits systems (pp. 1–4).Google Scholar
  26. 26.
    Janaswamy, R. (2002). Angle of arrival statistics for a 3D spheroid model. IEEE Transactions on Vehicular Technology, 51(5), 1242–1247.CrossRefGoogle Scholar
  27. 27.
    Janaswamy, R. (2002). Effect of element mutual coupling on the capacity of fixed length linear arrays. IEEE Antennas and Wireless Propagation Letters, 1(1), 157–160.CrossRefGoogle Scholar
  28. 28.
    Khan, N. M., Simsim, M. T., & Ramer, R. (2006). Modeling spatial aspects of mobile channel for macrocells using Gaussian scattering distribution. In Proceedings of IEEE international symposium on wireless communication systems (ISWCS’06), IEEE (pp. 616–620).Google Scholar
  29. 29.
    Khan, N. M., Simsim, M. T., & Rapajic, P. B. (2008). A generalized model for the spatial characteristics of the cellular mobile channel. IEEE Transactions on Vehicular Technology, 57(1), 22–37.CrossRefGoogle Scholar
  30. 30.
    Kuchar, A., Aparicio, E. A., Rossi, J. P., & Bonek, E. (2002). Azimuth, elevation, and delay of signals at mobile station site. In Wireless personal communications (pp. 99–110). Boston: Springer.Google Scholar
  31. 31.
    Kuchar, A., Rossi, J. P., & Bonek, E. (2000). Directional macro-cell channel characterization from urban measurements. IEEE Transactions on Antennas and Propagation, 48(2), 137–146.CrossRefGoogle Scholar
  32. 32.
    Mac Donald, V. H. (1979). Advanced mobile phone service: The cellular concept. Bell System Technical Journal, 58(1), 15–41.CrossRefGoogle Scholar
  33. 33.
    Madhusudhanan, P., Restrepo, J. G., Liu, Y., Brown, T. X., & Baker, K. R. (2011). Multi-tier network performance analysis using a shotgun cellular system. In Proceedings of IEEE global telecommunications conference (GLOBECOM), IEEE (pp. 1–6).Google Scholar
  34. 34.
    Marichamy, P., Chakrabarti, S., & Maskara, S. (1999). Overview of handoff schemes in cellular mobile networks and their comparative performance evaluation. Proceedings of IEEE Vehicular Technology Conference, 3, 1486–1490.Google Scholar
  35. 35.
    Michailidis, E. T., & Kanatas, A. G. (2010). Three-dimensional HAP-MIMO channels: Modeling and analysis of space–time correlation. IEEE Transactions on Vehicular Technology, 59(5), 2232–2242.CrossRefGoogle Scholar
  36. 36.
    Misra, S., Krishna, P. V., & Saritha, V. (2012). LACAV: An energy-efficient channel assignment mechanism for vehicular ad hoc networks. The Journal of Supercomputing, 62(3), 1241–1262.CrossRefGoogle Scholar
  37. 37.
    Nawaz, S. J., Qureshi, B. H., & Khan, N. M. (2010). A generalized 3D scattering model for a macrocell environment with a directional antenna at the BS. IEEE Transactions on Vehicular Technology, 59(7), 3193–3204. Scholar
  38. 38.
    Olenko, A. Y., Wong, K. T., & Hui-On Ng, E. (2006). Analytically derived uplink/downlink To A and 2 D- Do A distributions with scatterers in a 3 D hemispheroid surrounding the mobile. IEEE Transactions on Antennas and Propagation, 54(9), 2446–2454.CrossRefGoogle Scholar
  39. 39.
    Parsons, J., & Turkmani, A. (1991). Characterisation of mobile radio signals: Model description. In: Proceedings of IEE communications, speech and vision, IET (Vol. 138, pp. 549–556).Google Scholar
  40. 40.
    Petrus, P., Reed, J. H., & Rappaport, T. S. (1997). Effects of directional antennas at the base station on the doppler spectrum. IEEE Communications Letters, 1(2), 40–42.CrossRefGoogle Scholar
  41. 41.
    Petrus, P., Reed, J. H., & Rappaport, T. S. (2002). Geometrical-based statistical macrocell channel model for mobile environments. IEEE Transactions on Communications, 50(3), 495–502. Scholar
  42. 42.
    Rade, L., & Westergren, B. (2013). Mathematics handbook for science and engineering. Berlin: Springer.Google Scholar
  43. 43.
    Rappaport, T. S. (1996). Wireless communications: Principles and practice (Vol. 2). Upper Saddle River: Prentice Hall PTR.zbMATHGoogle Scholar
  44. 44.
    Salz, J., & Winters, J. H. (1994). Effect of fading correlation on adaptive arrays in digital mobile radio. IEEE Transactions on Vehicular Technology, 43(4), 1049–1057.CrossRefGoogle Scholar
  45. 45.
    Stüber, G. L. (2011). Principles of mobile communication. Berlin: Springer.Google Scholar
  46. 46.
    Talha, B., & Patzold, M. (2011). Channel models for mobile-to-mobile cooperative communication systems: A state of the art review. IEEE Vehicular Technology Magazine, 6(2), 33–43.CrossRefGoogle Scholar
  47. 47.
    Tripathi, N. D., Reed, J. H., & VanLandinoham, H. F. (1998). Handoff in cellular systems. IEEE Personal Communications, 5(6), 26–37.CrossRefGoogle Scholar
  48. 48.
    Wang, L., Min, G., & Kouvatsos, D. (2008). Performance analysis of a dynamic handoff scheme in wireless networks with heterogeneous call arrival processes. Telecommunication Systems, 39(2), 157–167.CrossRefGoogle Scholar
  49. 49.
    Wani, M. Y., Riaz, M., & Khan, N. M. (2016). Modeling and characterization of MIMO mobile-to-mobile communication channels using elliptical scattering geometry. Wireless Personal Communications, 91(2), 509–524.CrossRefGoogle Scholar
  50. 50.
    Yamada, Y., Ebine, Y., & Nakajima, N. (1987). Base station/vehicular antenna design techniques employed in high-capacity land mobile communications system. Review of the Electrical Communication Laboratories, 35(2), 115–121.Google Scholar
  51. 51.
    Zajić, A. G., & Stüber, G. L. (2008). Three-dimensional modeling, simulation, and capacity analysis of space–time correlated mobile-to-mobile channels. IEEE Transactions on Vehicular Technology, 57(4), 2042–2054. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and Information Technology (CS&IT)The University of LahoreIslamabadPakistan
  2. 2.Department of Electronics and Electrical SystemsThe University of LahoreIslamabadPakistan
  3. 3.Department of Electrical Engineering, Acme Center for Research in Wireless Communications (ARWiC)Capital University of Science and TechnologyIslamabadPakistan

Personalised recommendations