Cluster-Head Restricted Energy Efficient Protocol (CREEP) for Routing in Heterogeneous Wireless Sensor Networks

Article
  • 21 Downloads

Abstract

A magnanimous number of collaborative sensor nodes make up a Wireless Sensor Network (WSN). These sensor nodes are outfitted with low-cost and low-power sensors. The routing protocols are responsible for ensuring communications while considering the energy constraints of the system. Achieving a higher network lifetime is the need of the hour in WSNs. Currently, many network layer protocols are considering a heterogeneous WSN, wherein a certain number of the sensors are rendered higher energy as compared to the rest of the nodes. In this paper, we have critically analysed the various stationary heterogeneous clustering algorithms and assessed their lifetime and throughput performance in mobile node settings also. Although many newer variants of Distributed Energy-Efficiency Clustering (DEEC) scheme execute proficiently in terms of energy efficiency, they suffer from high system complexity due to computation and selection of large number of Cluster Heads (CHs). A protocol in form of Cluster-head Restricted Energy Efficient Protocol (CREEP) has been proposed to overcome this limitation and to further improve the network lifetime by modifying the CH selection thresholds in a two-level heterogeneous WSN. Simulation results establish that proposed solution ameliorates in terms of network lifetime as compared to others in stationary as well as mobile WSN scenarios.

Keywords

Clustering Heterogeneity Lifetime Routing Throughput Wireless sensor network 

References

  1. 1.
    Sohraby, K., Minoli, D., & Znati, T. (2007). Wireless sensor networks: Technology, protocols, and applications (pp. 1–38). New York: Wiley.CrossRefGoogle Scholar
  2. 2.
    Dargie, W., & Poellabauer, C. (2010). Fundamentals of wireless sensor networks: Theory and practice (pp. 180–183). New York: Wiley.CrossRefGoogle Scholar
  3. 3.
    Darwish, A., & Hassanien, A. E. (2011). Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors, 11, 5561–5595.CrossRefGoogle Scholar
  4. 4.
    Alemdar, H., & Ersoy, C. (2010). Wireless sensor networks for healthcare: A survey. Computer Networks, 54, 2688–2710.CrossRefGoogle Scholar
  5. 5.
    Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., & Anderson, J. (2002). Wireless sensor networks for habitat monitoring. In Proceedings of the 1st ACM international workshop on wireless sensor networks and applications (pp. 88–97). New York. http://dl.acm.org/author_page.cfm?id=81100420910&coll=DL&dl=ACM&trk=0&cfid=657832841&cftoken=21734529.
  6. 6.
    Szewczyk, R., Osterweil, E., Polastre, J., Hamilton, M., Mainwaring, A., & Estrin, D. (2004). Habitat monitoring with sensor networks. Communications of the ACM Wireless sensor networks, 47, 34–40.Google Scholar
  7. 7.
    Arora, P., Dutta, S., Bapat, V., Kulathumani, H., Zhang, V., Naik, V., et al. (2004). A line in the sand: A wireless sensor network for target detection, classification, and tracking. Computer Networks Journal, Elsevier, 46, 605–634.CrossRefGoogle Scholar
  8. 8.
    Cao, Q., Yan, T., Stankovic, J., & Abdelzaher, T. (2005). Analysis of target detection performance for wireless sensor networks. In Chapter- distributed computing in sensor systems, series-lecture notes in computer science 3650 (pp. 276–292). Springer.Google Scholar
  9. 9.
    Bokareva, T., Hu, W., Kanhere, S., Ristic, B., Gordon, N., Bessell, T., Rutten, M., & Jha, S. (2006). Wireless sensor networks for battlefield surveillance. In Land warfare conference, Brisbane (pp. 1–8).Google Scholar
  10. 10.
    Wenjie, C., Lifeng, C., Zhanglong, C., & Shiliang, T. (2005). A realtime dynamic traffic control system based on wireless sensor network. In IEEE international conference on parallel processing workshops (pp. 258–264).Google Scholar
  11. 11.
    Gomez, C., & Paradells, J. (2010). Wireless home automation networks: A survey of architectures and technologies. IEEE Communications Journal, 48, 92–101.CrossRefGoogle Scholar
  12. 12.
    Wheeler, A. (2007). Commercial applications of wireless sensor networks using ZigBee. IEEE Communications Journal, 45, 70–77.CrossRefGoogle Scholar
  13. 13.
    Kahn, J. M. (1999). Next century challenges: Mobile networking for smart dust. In ACM/IEEE international conference on mobile computing and networking (pp. 270–278).Google Scholar
  14. 14.
    Murty, R. N., Mainland, G., Rose, I., & Chowdhury, A. R. (2008). CitySense: An urban-scale wireless sensor network and testbed. In IEEE conference on technologies for homeland security (pp. 583–588).Google Scholar
  15. 15.
    Talzi, I., Hasler, A., Gruber, S., & Tschudin, C. (2007). PermaSense: Investigating permafrost with a WSN in the Swiss Alps. In Workshop on embedded networked sensors (pp. 8–12).Google Scholar
  16. 16.
    Shnayder, V., Chen, B. R., Lorincz, K., Fulford-Jones, T. R. F., & Welsh, M. (2005). Sensor networks for medical care. Technical Report TR-08-05, Division of Engineering and Applied Sciences, Harvard University.Google Scholar
  17. 17.
    Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy efficient communication protocol for wireless microsensor networks. In IEEE international conference on system sciences (pp. 1–10).Google Scholar
  18. 18.
    Yarvis, M., Kushalnagar, N., & Singh, H. (2005). Exploiting heterogeneity in sensor networks. In Proceedings of 24th annual joint conference of the IEEE computer and communications societies (INFOCOM), Miami, FL, United States (pp. 878–890).Google Scholar
  19. 19.
    Akyildiz, F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks Journal, Elsevier, 38, 393–422.CrossRefGoogle Scholar
  20. 20.
    Akyildiz, I. F., Weilian, S., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40, 102–114.CrossRefGoogle Scholar
  21. 21.
    Wang, B., Cheng, F., & Lim, H. B. (2009). Layered diffusion based coverage control in wireless sensor networks. Computer Networks Journal, Elsevier, 53, 1114–1124.CrossRefMATHGoogle Scholar
  22. 22.
    Duche, R., & Sarwade, N. (2016). Energy Efficient fault tolerant sensor node failure detection in WSNs. International Journal of Engineering and Technology Innovation, 6, 190–201.Google Scholar
  23. 23.
    Said, O. (2015). Performance evaluation of WSN management system for QoS guarantee. EURASIP Journal on Wireless Communications and Networking.  https://doi.org/10.1186/s13638-015-0449-4.Google Scholar
  24. 24.
    Singh, P., & Agrawal, S. (2013). Node localization in wireless sensor networks using the M5P tree and SMOreg algorithms. In IEEE international conference on computational intelligence and communication networks, Mathura, India, 2013.Google Scholar
  25. 25.
    Singh, P., & Agrawal, S. (2013). TDOA based node localization in WSN using neural networks. In IEEE international conference on communication systems and network technologies, Gwalior, India, 2013.Google Scholar
  26. 26.
    Anastasi, G., Conti, M., Di Francesco, M., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, Elsevier, 7, 537–568.CrossRefGoogle Scholar
  27. 27.
    Jha, M. K., Pandey, A. K., Pal, D., & Mohan, A. (2011). An energy efficient multi-layer MAC (ML-MAC) protocol for wireless sensor networks. AEU: International Journal of Electronics and Communications, 65, 209–216.Google Scholar
  28. 28.
    Min, X., Wei-ren, S., Chang-Jiang, J., & Ying, Z. (2010). Energy efficient clustering algorithm for maximizing lifetime of wireless sensor networks. AEU: International Journal of Electronics and Communications, 64, 289–298.Google Scholar
  29. 29.
    Tavli, B., Kayaalp, M., Ceylan, O., & Bagci, I. E. (2010). Data processing and communication strategies for lifetime optimization in wireless sensor networks. AEU: International Journal of Electronics and Communications, 64, 992–998.Google Scholar
  30. 30.
    Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks and ad hoc networks. Adhoc Networks, Elsevier, 3, 325–349.CrossRefGoogle Scholar
  31. 31.
    Kim, K. T., & Youn, H. Y. (2005). Energy-driven adaptive clustering hierarchy (EDACH) for wireless sensor networks. In Emerging Directions in embedded and ubiquitous computing (EUC) workshop (pp. 1098–1107).Google Scholar
  32. 32.
    Li, C., Ye, M., Chen, G., & Wu, J. (2005). An energy-efficient unequal clustering mechanism for wireless sensor networks. In IEEE international conference on mobile adhoc & sensor systems conference (pp. 604–612).Google Scholar
  33. 33.
    Jiguo, Yu., Qi, Y., Wang, G., & Xin, G. (2012). A cluster-based routing protocol for wireless sensor networks with non-uniform node distribution. AEU: International Journal of Electronics and Communications, 66, 54–61.Google Scholar
  34. 34.
    Sabet, M., & Naji, H. R. (2015). A decentralized Energy-efficient hierarchical cluster-based routing algorithm for wireless sensor networks. AEU: International Journal of Electronics and Communications, 69, 790–799.Google Scholar
  35. 35.
    Abbasi, A., & Younis, M. (2007). A survey on clustering algorithms for wireless sensor networks. Computer Communications, Elsevier, 30, 2826–2841.CrossRefGoogle Scholar
  36. 36.
    Wei, C., Yang, J., Gao, Y., & Zhang, Z. (2011). Cluster-based routing protocols in wireless sensor networks: A survey. In International IEEE conference on computer science and network technology, China (pp. 1659–1653).Google Scholar
  37. 37.
    Qing, L., Zhu, Q., & Wang, M. (2006). Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless sensor networks. Computer Communications Journal Elsevier, 29, 2230–2237.CrossRefGoogle Scholar
  38. 38.
    Smaragdakis, G., Matta, I., & Bestavros, A. (2004). SEP: A stable election protocol for clustered heterogeneous wireless sensor networks. In International workshop on sensor and actor network protocols and applications (SANPA) (pp. 1–6).Google Scholar
  39. 39.
    Saini, P., & Sharma, A. K. (2010). Energy efficient scheme for clustering protocol prolonging the lifetime of heterogeneous wireless sensor networks. International Journal of Computer Applications, 6, 1–6.Google Scholar
  40. 40.
    Kaur, G., Bhatti, R., & Kaur, P. (2015). E-CHATSEP: Enhanced CHATSEP for clustered heterogeneous wireless sensor networks. In IEEE International conference on computing, communication and automation (ICCCA) (pp. 403–407).Google Scholar
  41. 41.
    Kumar, S., Verma, S. K., & Kumar, A. (2015). Enhanced threshold sensitive stable election protocol for heterogeneous wireless sensor networks. Wireless Personal Communications, Springer, 85, 1–6.CrossRefGoogle Scholar
  42. 42.
    Bagouri, M., Chakkor, S., & Hajraoui, A. (2014). Improving threshold distributed energy efficient clustering algorithm for heterogeneous wireless sensor networks (pp. 1–6). Morocco: IEEE International Colloquium in Information Science and Technology.Google Scholar
  43. 43.
    Mottaghi, S., & Zahabi, M. R. (2015). Optimizing LEACH clustering algorithm with mobile sink and rendezvous nodes. AEU: International Journal of Electronics and Communications, 69, 507–514.Google Scholar
  44. 44.
    Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L., & Rubenstein, D. (2002). Energy efficient computing for wildlife tracking: Design tradeoffs and early experiences with zebranet. In Proceedings of ASPLOS-X (pp. 1–6).Google Scholar
  45. 45.
    Kusy, B., Ledeczi, A., & Koutsoukos, X. (2007). Tracking mobile nodes using RF Doppler shift. In 5th International conference on embedded networked sensor systems, ACM, New York (pp. 29–42).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University Institute of Engineering and TechnologyPanjab UniversityChandigarhIndia

Personalised recommendations