Skip to main content
Log in

Channel Models for Body Surface Communications in Ultra Wideband-Based Wireless Body Area Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Body area networks are being developed to serve a wide range of purposes ranging from providing health care to patients on the move to tracking patients and motion sensing for gaming controls. There has been significant and sizeable amount of research in the various areas and applications of body area networks. Ultra wideband which operates in the 3.1–10.6 GHz band is slowly being preferred for high data rate communication in body area networks. The development of suitable applications and techniques for communication depends significantly on the channel models. The wireless channel is a crucial parameter as it provides significant information about the propagation characteristics and losses involved in the transmission medium. The existing channel models proposed are mostly in the spectra involving the wideband 3.1–10.6 GHz bands or the 3.1–6 GHz bands. However, the IEEE 802.15.6 specifies operation in various sub-bands of 499.2 MHz width. And the channel characteristics are significantly different for wideband and narrowband channels. In this article, we propose empirical channel models for body surface communication in the various sub-bands specified by the IEEE 802.15.6. The body surface scenario is chosen as the combination of propagation through wireless media and losses due to absorption from body tissues make it challenging. The proposed path loss models are developed from more than 300,000 received power measurements collected over a span of hours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yuce, M. R. (2010). Implementation of wireless body area networks for healthcare systems. Sensors Actuators A Physical, 162(1), 116–129.

    Article  MathSciNet  Google Scholar 

  2. Cao, H., Leung, V., Chow, C., & Chan, H. (2009). Enabling technologies for wireless body area networks: A survey and outlook. IEEE Communications Magazine, 47(12), 84–93.

    Article  Google Scholar 

  3. Astrin, A. W., Huan-Bang, L. I., & Kohno, R. (2009). Standardization for body area networks. IEICE Transactions on Communications, 92(2), 366–372.

    Article  Google Scholar 

  4. Astrin, A., et al. (2012). IEEE standard for local and metropolitan area networks part 15.6: Wireless body area networks: IEEE STD 802.15. 6-2012. Doc. is available IEEE Xplore.

  5. Boulis, A., Smith, D., Miniutti, D., Libman, L., & Tselishchev, Y. (2012). Challenges in body area networks for healthcare: The MAC. IEEE Communications Magazine, 50(5), 100–106.

    Article  Google Scholar 

  6. Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless body area networks: A survey. IEEE Communications Surveys and Tutorials, 16(3), 1658–1686.

    Article  Google Scholar 

  7. Ghavami, M., Michael, L. B., & Kohno, R. (2004). Front matter. New York: Wiley.

    Book  Google Scholar 

  8. Siriwongpairat, W. P., & Liu, K. J. R. (2007). Ultra-wideband communications systems: Multiband OFDM approach. New York: Wiley.

    Book  Google Scholar 

  9. Porcino, D., & Hirt, W. (2003). Ultra-wideband radio technology: Potential and challenges ahead. IEEE Communications Magazine, 41(7), 66–74.

    Article  Google Scholar 

  10. Zasowski, T., Althaus, F., Stage, M., Wittneben, A., & Troste, G. (2003). UWB for noninvasive wireless body area networks: channel measurements and results. In 2003 IEEE conference on ultra wideband systems and technologies (pp. 285–289).

  11. Allen, B., Ghavami, M., Armogida, A., & Aghvami, H. (2003). UWB technology. Communication Engineering, 1(5), 14–17.

    Article  Google Scholar 

  12. Mahesh, R. K. N., Ganesan, A., Kumar, M. P., & Paily, R. (2013). An ultra-wideband baseband transmitter design for wireless body area network. In VLSI design and test (pp. 26–34). Berlin: Springer.

  13. Sawada, H., Aoyagi, T., Takada, J., Yazdandoost, K. Y., & Kohno, R. (2008). Channel models between body surface and wireless access point for UWB band. IEEE 802.15 WPAN Doc. IEEE 802.15-08-0576-00-0006 (pp. 1–14).

  14. Molisch, A. F., Foerster, J. R., & Pendergrass, M. (2003). Channel models for ultrawideband personal area networks. IEEE Wireless Communications, 10(6), 14–21.

    Article  Google Scholar 

  15. Pang, Y., Lei, Q., Lin, J., Li, Z., & Ren, Y. (2013). Channel models of body area networks. Sensor Letters, 11(4), 731–735.

    Article  Google Scholar 

  16. Taparugssanagorn, A., Pomalaza-Ráez, C., Isola, A., Tesi, R., Hämäläinen, M., & Iinatti, J. (2009). UWB channel modeling for wireless body area networks in medical applications. In Proceedings of the international symposium on medical information and communication technology (ISMICT), 2009.

  17. Yazdandoost, K. Y., Sayrafian-Pour, K., et al. (2009). Channel model for body area network (BAN). IEEE p802 15-08-0780-09-0006.

  18. Cotton, S. L., D’Errico, R., & Oestges, C. (2014). A review of radio channel models for body centric communications. Radio Science, 49(6), 371–388.

    Article  Google Scholar 

  19. Smith, D. B., & Miniutti, D. (2012). Cooperative selection combining in body area networks: Switching rates in gamma fading. IEEE Wireless Communications Letters, 1(4), 284–287.

    Article  Google Scholar 

  20. Aoyagi, T. et al. (2008) Channel model for wearable and implantable WBANs. IEEE 802.15-08-0416-04-0006.

  21. Seyed Mazloum, N. (2008). Body-coupled communications-experimental characterization, channel modeling and physical layer design. No. December, 2008.

  22. Mohamed, M., Cheffena, M., Moldsvor, A., & Fontan, F. P. (2017). Physical-statistical channel model for off-body area network. IEEE Antennas and Wireless Propagation Letters, 16, 1516–1519.

    Article  Google Scholar 

  23. Cui, P.-F., Yu, Y., Lu, W.-J., Liu, Y., & Zhu, H.-B. (2017). Measurement and modeling of wireless off-body propagation characteristics under hospital environment at 6–8.5 GHz. IEEE Access.

  24. Smith, D. B., & Miniutti, D. (2012). Cooperative body-area-communications: First and second-order statistics with decode-and-forward. In Wireless communications and networking conference (WCNC), 2012 IEEE, 2012 (pp. 689–693).

  25. Smith, D. B., Miniutti, D., Lamahewa, T. A., & Hanlen, L. W. (2013). Propagation models for body-area networks: A survey and new outlook. IEEE Antennas and Propagation Magazine, 55(5), 97–117.

    Article  Google Scholar 

  26. Di Franco, F., Tachtatzis, C., Atkinson, R. C., Tinnirello, I., & Glover, I. A. (2015). Channel estimation and transmit power control in wireless body area networks. IET Wireless Sensor Systems, 5(1), 11–19.

    Article  Google Scholar 

  27. Alomainy, A., Hao, Y., Hu, X., Parini, C. G., & Hall, P. S. (2006). UWB on-body radio propagation and system modelling for wireless body-centric networks. IEE Proceedings-Communications, 153(1), 107–114.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar Rout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rout, D.K., Das, S. Channel Models for Body Surface Communications in Ultra Wideband-Based Wireless Body Area Networks. Wireless Pers Commun 100, 1263–1275 (2018). https://doi.org/10.1007/s11277-018-5633-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5633-5

Keywords

Navigation