Channel Models for Body Surface Communications in Ultra Wideband-Based Wireless Body Area Networks



Body area networks are being developed to serve a wide range of purposes ranging from providing health care to patients on the move to tracking patients and motion sensing for gaming controls. There has been significant and sizeable amount of research in the various areas and applications of body area networks. Ultra wideband which operates in the 3.1–10.6 GHz band is slowly being preferred for high data rate communication in body area networks. The development of suitable applications and techniques for communication depends significantly on the channel models. The wireless channel is a crucial parameter as it provides significant information about the propagation characteristics and losses involved in the transmission medium. The existing channel models proposed are mostly in the spectra involving the wideband 3.1–10.6 GHz bands or the 3.1–6 GHz bands. However, the IEEE 802.15.6 specifies operation in various sub-bands of 499.2 MHz width. And the channel characteristics are significantly different for wideband and narrowband channels. In this article, we propose empirical channel models for body surface communication in the various sub-bands specified by the IEEE 802.15.6. The body surface scenario is chosen as the combination of propagation through wireless media and losses due to absorption from body tissues make it challenging. The proposed path loss models are developed from more than 300,000 received power measurements collected over a span of hours.


Body area network Ultra wideband Channel modelling Body surface communication 


  1. 1.
    Yuce, M. R. (2010). Implementation of wireless body area networks for healthcare systems. Sensors Actuators A Physical, 162(1), 116–129.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cao, H., Leung, V., Chow, C., & Chan, H. (2009). Enabling technologies for wireless body area networks: A survey and outlook. IEEE Communications Magazine, 47(12), 84–93.CrossRefGoogle Scholar
  3. 3.
    Astrin, A. W., Huan-Bang, L. I., & Kohno, R. (2009). Standardization for body area networks. IEICE Transactions on Communications, 92(2), 366–372.CrossRefGoogle Scholar
  4. 4.
    Astrin, A., et al. (2012). IEEE standard for local and metropolitan area networks part 15.6: Wireless body area networks: IEEE STD 802.15. 6-2012. Doc. is available IEEE Xplore.Google Scholar
  5. 5.
    Boulis, A., Smith, D., Miniutti, D., Libman, L., & Tselishchev, Y. (2012). Challenges in body area networks for healthcare: The MAC. IEEE Communications Magazine, 50(5), 100–106.CrossRefGoogle Scholar
  6. 6.
    Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless body area networks: A survey. IEEE Communications Surveys and Tutorials, 16(3), 1658–1686.CrossRefGoogle Scholar
  7. 7.
    Ghavami, M., Michael, L. B., & Kohno, R. (2004). Front matter. New York: Wiley.CrossRefGoogle Scholar
  8. 8.
    Siriwongpairat, W. P., & Liu, K. J. R. (2007). Ultra-wideband communications systems: Multiband OFDM approach. New York: Wiley.CrossRefGoogle Scholar
  9. 9.
    Porcino, D., & Hirt, W. (2003). Ultra-wideband radio technology: Potential and challenges ahead. IEEE Communications Magazine, 41(7), 66–74.CrossRefGoogle Scholar
  10. 10.
    Zasowski, T., Althaus, F., Stage, M., Wittneben, A., & Troste, G. (2003). UWB for noninvasive wireless body area networks: channel measurements and results. In 2003 IEEE conference on ultra wideband systems and technologies (pp. 285–289).Google Scholar
  11. 11.
    Allen, B., Ghavami, M., Armogida, A., & Aghvami, H. (2003). UWB technology. Communication Engineering, 1(5), 14–17.CrossRefGoogle Scholar
  12. 12.
    Mahesh, R. K. N., Ganesan, A., Kumar, M. P., & Paily, R. (2013). An ultra-wideband baseband transmitter design for wireless body area network. In VLSI design and test (pp. 26–34). Berlin: Springer.Google Scholar
  13. 13.
    Sawada, H., Aoyagi, T., Takada, J., Yazdandoost, K. Y., & Kohno, R. (2008). Channel models between body surface and wireless access point for UWB band. IEEE 802.15 WPAN Doc. IEEE 802.15-08-0576-00-0006 (pp. 1–14).Google Scholar
  14. 14.
    Molisch, A. F., Foerster, J. R., & Pendergrass, M. (2003). Channel models for ultrawideband personal area networks. IEEE Wireless Communications, 10(6), 14–21.CrossRefGoogle Scholar
  15. 15.
    Pang, Y., Lei, Q., Lin, J., Li, Z., & Ren, Y. (2013). Channel models of body area networks. Sensor Letters, 11(4), 731–735.CrossRefGoogle Scholar
  16. 16.
    Taparugssanagorn, A., Pomalaza-Ráez, C., Isola, A., Tesi, R., Hämäläinen, M., & Iinatti, J. (2009). UWB channel modeling for wireless body area networks in medical applications. In Proceedings of the international symposium on medical information and communication technology (ISMICT), 2009.Google Scholar
  17. 17.
    Yazdandoost, K. Y., Sayrafian-Pour, K., et al. (2009). Channel model for body area network (BAN). IEEE p802 15-08-0780-09-0006.Google Scholar
  18. 18.
    Cotton, S. L., D’Errico, R., & Oestges, C. (2014). A review of radio channel models for body centric communications. Radio Science, 49(6), 371–388.CrossRefGoogle Scholar
  19. 19.
    Smith, D. B., & Miniutti, D. (2012). Cooperative selection combining in body area networks: Switching rates in gamma fading. IEEE Wireless Communications Letters, 1(4), 284–287.CrossRefGoogle Scholar
  20. 20.
    Aoyagi, T. et al. (2008) Channel model for wearable and implantable WBANs. IEEE 802.15-08-0416-04-0006.Google Scholar
  21. 21.
    Seyed Mazloum, N. (2008). Body-coupled communications-experimental characterization, channel modeling and physical layer design. No. December, 2008.Google Scholar
  22. 22.
    Mohamed, M., Cheffena, M., Moldsvor, A., & Fontan, F. P. (2017). Physical-statistical channel model for off-body area network. IEEE Antennas and Wireless Propagation Letters, 16, 1516–1519.CrossRefGoogle Scholar
  23. 23.
    Cui, P.-F., Yu, Y., Lu, W.-J., Liu, Y., & Zhu, H.-B. (2017). Measurement and modeling of wireless off-body propagation characteristics under hospital environment at 6–8.5 GHz. IEEE Access.Google Scholar
  24. 24.
    Smith, D. B., & Miniutti, D. (2012). Cooperative body-area-communications: First and second-order statistics with decode-and-forward. In Wireless communications and networking conference (WCNC), 2012 IEEE, 2012 (pp. 689–693).Google Scholar
  25. 25.
    Smith, D. B., Miniutti, D., Lamahewa, T. A., & Hanlen, L. W. (2013). Propagation models for body-area networks: A survey and new outlook. IEEE Antennas and Propagation Magazine, 55(5), 97–117.CrossRefGoogle Scholar
  26. 26.
    Di Franco, F., Tachtatzis, C., Atkinson, R. C., Tinnirello, I., & Glover, I. A. (2015). Channel estimation and transmit power control in wireless body area networks. IET Wireless Sensor Systems, 5(1), 11–19.CrossRefGoogle Scholar
  27. 27.
    Alomainy, A., Hao, Y., Hu, X., Parini, C. G., & Hall, P. S. (2006). UWB on-body radio propagation and system modelling for wireless body-centric networks. IEE Proceedings-Communications, 153(1), 107–114.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Telecommunication EngineeringCV Raman College of EngineeringBhubaneswarIndia
  2. 2.Department of Electrical EngineeringNational Institute of Technology RourkelaRourkelaIndia

Personalised recommendations