Skip to main content
Log in

RETRACTED ARTICLE: A Big Data-Driven Approach to Catering O2O Modeling

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

This article was retracted on 19 December 2022

This article has been updated

Abstract

With the progress of digital and information technology, the rise and rapid development of big data technology has drawn great attention from all quarters. However, there is a general lack of overall planning in the field of catering O2O. Combined with the development and application of catering O2O, this paper analyzes and studies the different levels of the design of the catering O2O cloud platform system. A decision support system for dietary recommendation based on Chinese traditional Chinese medicine theory is described in this research. The theory and method of diet decision support system are analyzed in order to provide a reference for the new method of catering O2O modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Baoxiang, X., & Yunzhong, Z. (2010). Research on the development of information system modeling theory. Journal of Intelligence, 29(5), 70–74.

    Google Scholar 

  2. McAfee, A., Brynjolfsson, E., Davenport, T. H., et al. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 61–67.

    Google Scholar 

  3. Barton, D., & Court, D. (2012). Spotlight on big data-making advanced analytics work for you. Harvard Business Review, 90, 79–83.

    Google Scholar 

  4. Narayanan, M., & Cherukuri, A. K. (2016). A study and analysis of recommendation systems for location-based social network (LBSN) with big data. Iimb Management Review, 28(1), 25–30.

    Article  Google Scholar 

  5. Gil, D., & Song, I. Y. (2016). Modeling and management of big data. Amsterdam: Elsevier Science Publishers B. V.

    Google Scholar 

  6. Douglas, C. C. (2014). An open framework for dynamic big-data-driven application systems (DBDDAS) development ☆. Procedia Computer Science, 29, 1246–1255.

    Article  Google Scholar 

  7. LaValle, S., Lesser, E., Shockley, R., et al. (2011). Big data, analytics and the path from insights to value. MIT Sloan Management Review, 52(2), 21–32.

    Google Scholar 

  8. Kambatla, K., Kollias, G., Kumar, V., & Grama, A. (2014). Trends in big data analytics. Journal of Parallel & Distributed Computing, 74(7), 2561–2573.

    Article  Google Scholar 

  9. Wamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234–246.

    Article  Google Scholar 

  10. Wang, Y., Kung, L. A., & Byrd, T. A. (2016). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technological Forecasting and Social Change, 126, 3–13.

    Article  Google Scholar 

  11. Raghupathi, W., & Raghupathi, V. (2014). Big data analytics in healthcare: Promise and potential. Health Information Science and Systems, 2(1), 3.

    Article  Google Scholar 

  12. Yang, Q., Wu, G., & Wang, L. (2017). Big data: A new perspective of the engineering project management driven by data. Xitong Gongcheng Lilun Yu Shijian/System Engineering Theory & Practice, 37(3), 710–719.

    Google Scholar 

  13. Zhao, R., Liu, Y., Zhang, N., & Huang, T. (2016). An optimization model for green supply chain management by using a big data analytic approach. Journal of Cleaner Production, 140(2), 1085–1097.

    Google Scholar 

  14. Khalili, A., & Sami, A. (2015). Sysdetect: A systematic approach to critical state determination for industrial intrusion detection systems using apriori algorithm. Journal of Process Control, 32(11), 154–160.

    Article  Google Scholar 

  15. Riggins, F. J., & Wamba, S. F. (2015). Research directions on the adoption, usage, and impact of the internet of things through the use of big data analytics. In IEEE Hawaii international conference on system sciences (pp. 1531–1540).

  16. Poleto, T., Carvalho, V. D. H. D., & Costa, A. P. C. S. (2015). The Roles of Big Data in the Decision-Support Process: An Empirical Investigation. In International conference on decision support system technology (Vol. 216, pp. 10–21). Berlin: Springer.

    Chapter  Google Scholar 

  17. Caballeroruiz, E., Garcíasáez, G., Rigla, M., Villaplana, M., Pons, B., & Hernando, M. E. (2017). A web-based clinical decision support system for gestational diabetes: Automatic diet prescription and detection of insulin needs. International Journal of Medical Informatics, 102, 35–49.

    Article  Google Scholar 

  18. Malmir, B., Amini, M., & Chang, S. I. (2017). A medical decision support system for disease diagnosis under uncertainty. Expert Systems with Applications, 88, 95–108.

    Article  Google Scholar 

  19. Zhuang, Z. Y., Wilkin, C. L., & Ceglowski, A. (2013). A framework for an intelligent decision support system: A case in pathology test ordering. Decision Support Systems, 55(2), 476–487.

    Article  Google Scholar 

  20. Rustempasic, I., & Can, M. (2013). Diagnosis of parkinson’s disease using fuzzy c-means clustering and pattern recognition. Southeast Europe Journal of Soft Computing, 2(1), 42–49.

    Article  Google Scholar 

  21. Babiceanu, R. F., & Seker, R. (2016). Big data and virtualization for manufacturing cyber-physical systems: A survey of the current status and future outlook. Computers in Industry, 81(C), 128–137.

    Article  Google Scholar 

  22. Lee, J., Ardakani, H. D., Yang, S., & Bagheri, B. (2015). Industrial big data analytics and cyber-physical systems for future maintenance & service innovation ☆. Procedia CIRP, 38, 3–7.

    Article  Google Scholar 

  23. Cevher, V., Becker, S., & Schmidt, M. (2014). Convex optimization for big data: Scalable, randomized, and parallel algorithms for big data analytics. IEEE Signal Processing Magazine, 31(5), 32–43.

    Article  Google Scholar 

  24. Chan, S. H., Song, Q., Sarker, S., & Plumlee, R. D. (2017). Decision support system (DSS) use and decision performance: DSS motivation and its antecedents. Information & Management, 54, 934.

    Article  Google Scholar 

  25. Kumar, S. J., & Madheswaran, M. (2012). An improved medical decision support system to identify the diabetic retinopathy using fundus images. Journal of Medical Systems, 36(6), 3573–3581.

    Article  Google Scholar 

  26. Zhou, X., Chen, S., Liu, B., Zhang, R., Wang, Y., Li, P., et al. (2010). Development of traditional chinese medicine clinical data warehouse for medical knowledge discovery and decision support. Artificial Intelligence in Medicine, 48(2–3), 139–152.

    Article  Google Scholar 

  27. Angel, G. C., Giner, A. H., Linamara, B., & Alejandro, R. G. (2013). Methods and models for diagnosis and prognosis in medical systems. Computational & Mathematical Methods in Medicine, 2013(3), 184257.

    MathSciNet  Google Scholar 

  28. Xu, F., Zhang, Y., Cui, W., Yi, T., Tang, Z., & Dong, J. (2017). The association between metabolic syndrome and body constitution in traditional chinese medicine. European Journal of Integrative Medicine, 14, 32–36.

    Article  Google Scholar 

  29. Yu, T., Li, J., Yu, Q., Ye, T., Shun, X., Xu, L., et al. (2017). Knowledge graph for tcm health preservation: Design, construction, and applications. Artificial Intelligence in Medicine, 77, 48–52.

    Article  Google Scholar 

  30. Kolodner, J. L. (1992). An introduction to case-based reasoning. Artificial Intelligence Review, 6(1), 3–34.

    Article  Google Scholar 

  31. Aamodt, A., & Plaza, E. (1994). Case-based reasoning: Foundational issues, methodological variations, and system approaches. Ai Communications, 7(1), 39–59.

    Article  Google Scholar 

  32. Zhao, Y., Zhang, M., Guo, X., Zhou, Z., & Zhang, J. (2017). Research on matching method for case retrieval process in CBR based on FCM ☆. Procedia Engineering, 174, 267–274.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (Grant: 71473087), the SRP project of South China University of Technology (Grant: 2017B16020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongping Tang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, D., Zhu, W. & Kuvshinov, A. RETRACTED ARTICLE: A Big Data-Driven Approach to Catering O2O Modeling. Wireless Pers Commun 103, 1089–1099 (2018). https://doi.org/10.1007/s11277-018-5503-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5503-1

Keywords

Navigation