Skip to main content
Log in

Optimal Node Clustering and Scheduling in Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Selection and rotation of cluster head (CH) is a well known optimization problem in hierarchical Wireless sensor networks (WSNs), which affects its overall network performance. Population-based metaheuristic particularly Artificial bee colony (ABC) has shown to be competitive over other metaheuristics for solving optimization problems in WSNs. However, its search equation contributes to its insufficiency due to poor exploitation phase and low convergence rate. This paper, presents an improved artificial bee colony (iABC) metaheuristic with an improved search equation, which will be able to search an optimal solution to improve its exploitation capabilities moreover, in order to increase the global convergence of the proposed metaheuristic, an improved approach for population sampling is introduced through Student’s-t distribution. The proposed metaheuristic maintain a balance between exploration and exploitation search abilities with least memory requirements, with the use of first of its kind compact Student’s-t distribution, which is particularly suitable for WSNs limited hardware environment. Further utilising the capabilities of the proposed metaheuristic, an improved artificial bee colony based clustering and scheduling (iABC-CS) scheme is introduced, to obtain optimal cluster heads (CHs) along with optimal CH scheduling in WSNs. Simulation results manifest that iABC-CS outperform over other well known clustering algorithms on the basis of packet delivery ratio, energy consumption, network lifetime and end to end delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  2. Al-Karaki, J. N., & Kamal, A. E. (2004). Routing techniques in wireless sensor networks: A survey. IEEE Wireless Communications, 11(6), 6–28.

    Article  Google Scholar 

  3. Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad hoc Networks, 3(3), 325–349.

    Article  Google Scholar 

  4. Gaura, E. (2010). Wireless sensor networks: Deployments and design frameworks. Berlin: Springer.

    Book  Google Scholar 

  5. Abbasi, A. A., & Younis, M. (2007). A survey on clustering algorithms for wireless sensor networks. Computer Communications, 30(14), 2826–2841.

    Article  Google Scholar 

  6. Tyagi, S., & Kumar, N. (2012). A systematic review on clustering and routing techniques based upon leach protocol for wireless sensor networks. Journal of Network and Computer Applications, 36, 623–645.

    Article  Google Scholar 

  7. Chamam, A., & Pierre, S. (2010). A distributed energy-efficient clustering protocol for wireless sensor networks. Computers & Electrical Engineering, 36(2), 303–312.

    Article  MATH  Google Scholar 

  8. Kulkarni, R. V., Forster, A., & Venayagamoorthy, G. K. (2011). Computational intelligence in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 13(1), 68–96.

    Article  Google Scholar 

  9. Das, S., Abraham, A., & Konar, A. (2009). Metaheuristic clustering. In Studies in computational intelligence (1st ed., Vol. 178). Berlin: Springer.

  10. Samrat, L., & Udgata, A. A. S. (2010). Artificial bee colony algorithm for small signal model parameter extraction of MESFET. Engineering Applications of Artificial Intelligence, 11, 1573–1592.

    Google Scholar 

  11. Karaboga, D., & Akay, B. (2009). A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation, 214(1), 108–132.

    Article  MathSciNet  MATH  Google Scholar 

  12. Heinzelman, W. B., Chandrakasan, A. P., Balakrishnan, H., et al. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Article  Google Scholar 

  13. Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.

    Article  Google Scholar 

  14. Yi, S., Heo, J., Cho, Y., & Hong, J. (2007). PEACH: Power-efficient and adaptive clustering hierarchy protocol for wireless sensor networks. Computer Communications, 30(14), 2842–2852.

    Article  Google Scholar 

  15. Selvakennedy, S., Sinnappan, S., & Shang, Y. (2007). A biologically-inspired clustering protocol for wireless sensor networks. Computer Communications, 30(14), 2786–2801.

    Article  Google Scholar 

  16. Jin, Y., Wang, L., Kim, Y., & Yang, X. (2008). EEMC: An energy-efficient multi-level clustering algorithm for large-scale wireless sensor networks. Computer Networks, 52(3), 542–562.

    Article  MATH  Google Scholar 

  17. Kumar, D., Aseri, T. C., & Patel, R. (2009). EEHC: Energy efficient heterogeneous clustered scheme for wireless sensor networks. Computer Communications, 32(4), 662–667.

    Article  Google Scholar 

  18. Yang, J., Xu, M., Zhao, W., & Xu, B. (2009). A multipath routing protocol based on clustering and ant colony optimization for wireless sensor networks. Sensors, 10(5), 4521–4540.

    Article  Google Scholar 

  19. Deng, S., Li, J., & Shen, L. (2011). Mobility-based clustering protocol for wireless sensor networks with mobile nodes. IET Wireless Sensor Systems, 1(1), 39–47.

    Article  Google Scholar 

  20. Song, M. A. O., & Zhao, C. (2011). Unequal clustering algorithm for WSN based on fuzzy logic and improved ACO. The Journal of China Universities of Posts and Telecommunications, 18(6), 89–97.

    Article  Google Scholar 

  21. Liu, Z., Zheng, Q., Xue, L., & Guan, X. (2012). A distributed energy-efficient clustering algorithm with improved coverage in wireless sensor networks. Future Generation Computer Systems, 28(5), 780–790.

    Article  Google Scholar 

  22. Attea, B. A., & Khalil, E. A. (2012). A new evolutionary based routing protocol for clustered heterogeneous wireless sensor networks. Applied Soft Computing, 12, 1950–1957.

    Article  Google Scholar 

  23. Hoang, D., Yadav, P., Kumar, R., & Panda, S. (2014). Real-time implementation of a harmony search algorithm-based clustering protocol for energy efficient wireless sensor networks. IEEE Transactions on Industrial Informatics, 10, 774–783.

    Article  Google Scholar 

  24. Kuila, P., & Jana, P. K. (2014). Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach. Engineering Applications of Artificial Intelligence, 33, 127–140.

    Article  Google Scholar 

  25. Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8(1), 687–697.

    Article  Google Scholar 

  26. Zhang, R., & Wu, C. (2011). An artificial bee colony algorithm for the job shop scheduling problem with random processing times. Entropy, 13(9), 1708–1729.

    Article  MATH  Google Scholar 

  27. Gao, W., & L, S. (2011). Improved artificial bee colony algorithm for global optimization. Information Processing Letters, 111(17), 871–882.

    Article  MathSciNet  MATH  Google Scholar 

  28. Neri, F., Iacca, G., & Mininno, E. (2013). Compact Optimization. In I. Zelinka, V. Snášel, & A. Abraham (Eds.), Handbook of Optimization. Intelligent Systems Reference Library (Vol. 38). Berlin: Springer

  29. Gao, W., Liu, S., & Huang, L. (2012). A global best artificial bee colony algorithm for global optimization. Journal of Computational and Applied Mathematics, 236(11), 2741–2753.

    Article  MathSciNet  MATH  Google Scholar 

  30. Abro, A. G., & Mohamad-Saleh, J. (2012). Enhanced global-best artificial bee colony optimization algorithm. In Sixth UKSim-AMSS European symposium on computer modeling and simulation (pp. 95–100).

  31. Gao, W., Liu, S. Y., & Huang, L. L. (2013). A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE Transactions on Cybernetics, 43(3), 1011–1024.

    Article  Google Scholar 

  32. Li, G., Niu, P., & Xiao, X. (2013). Development and investigation of efficient artificial bee colony algorithm for numerical function optimization. Applied Soft Computing, 12(1), 320–332.

    Article  Google Scholar 

  33. Guo, P., Cheng, W., & Liang, J. (2011). Global artificial bee colony search algorithm for numerical function optimization. Seventh International Conference on Natural Computation, 3, 1280–1283.

    Article  Google Scholar 

  34. Akay, B., & Karaboga, D. (2012). A modified artificial bee colony algorithm for real-parameter optimization. Information Science, 192, 120–142.

    Article  Google Scholar 

  35. Mininno, E., Cupertino, F., & Naso, D. (2008). Real-valued compact genetic algorithms for embedded microcontroller optimization. IEEE Transactions on Evolutionary Computation, 12(2), 203–219.

    Article  Google Scholar 

  36. Larranaga, P., & Lozano, J. A. (2001). Estimation of distribution algorithms: A new tool for evolutionary computation. Alphen aan den Rijn: Kluwer.

    MATH  Google Scholar 

  37. Walck, C. (2007). Statistical Distributions for experimentalists. Particle Physics Group.

  38. Storn, R., & Price, K. (2010). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 23, 689–694.

    MATH  Google Scholar 

  39. Das, S., & Suganthan, P. N. (2011). Differential evolution: A survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 15, 4–31.

    Article  Google Scholar 

  40. Gonuguntla, V., Mallipeddi. R., & Veluvolu, K. C. (2015). Differential evolution with population and strategy parameter adaptation. Mathematical Problems in Engineering.

Download references

Acknowledgements

The authors of the study acknowledge the contribution of I. K. Gujral Punjab Technical University, Kapurthala, Punjab, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palvinder Singh Mann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mann, P.S., Singh, S. Optimal Node Clustering and Scheduling in Wireless Sensor Networks. Wireless Pers Commun 100, 683–708 (2018). https://doi.org/10.1007/s11277-018-5341-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5341-1

Keywords

Navigation