Wireless Personal Communications

, Volume 99, Issue 4, pp 1713–1724 | Cite as

Sub-optimal Antenna Selection in the High SNR MIMO Correlated Downlink Channel

  • Md. Abdul Latif Sarker
  • Moon Ho Lee
  • Sunil Chinnadurai
Article
  • 26 Downloads

Abstract

In this paper, we present a sub-optimal antenna selection technique to enhance the channel capacity in the case of High SNR MIMO correlated downlink channel. Most related work has thus far considered uncorrelated MIMO channel with antenna selection technique and used a larger radio frequency (RF) module. Thus, we propose the MIMO correlated downlink MIMO channel with sub-optimal antenna selection method to employ a smaller number of RF module. In this paper, we first design and develop the Toeplitz channel correlation matrices which reflect the correlations between the transmitter antennas, then apply a sub-optimal transmit antenna selection technique to improve the channel capacity. Mote Carlo simulation results show that the channel capacity significantly enhance considering equal power transmission.

Keywords

MIMO correlated downlink channel Toeplitz channel correlation matrices Sub-optimal antenna selection The channel capacity 

Notes

Acknowledgements

This work was supported by MEST 2015R1A2A1A05000977, NRF, Republic of Korea.

References

  1. 1.
    Gesbert, D., Shafi, M., Shiu, D. S., Smith, P. J., & Naguib, A. (2003). From theory to practice: An overview of MIMO coded wireless systems. IEEE Journal on selected areas in Communications, 21(3), 281–302.CrossRefGoogle Scholar
  2. 2.
    Bölcskei, H., Borgmann, M., & Paulraj, A. J. (2003). Impact of the propagation environment on the performance of space-frequency coded MIMO OFDM. IEEE Journal on Selected Areas in Communications, 21(3), 427–439.CrossRefGoogle Scholar
  3. 3.
    Tulino, A., Lozano, M., & Verdu, S. (2005). Impact of antenna correlation on the capacity of multi-antenna channels. IEEE Transaction on Information Theory, 51(7), 2491–2509.CrossRefMATHGoogle Scholar
  4. 4.
    Shiu, D., Foschini, G. J., Gans, M. J., & Kahn, J. M. (2000). Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Transactions on Communications, 48(3), 502–513.CrossRefGoogle Scholar
  5. 5.
    Smith, P. J., Roy, S., & Shafi, M. (2003). Capacity of MIMO systems with semi-correlated flat fading. IEEE Transactions on Information Theory, 49(10), 2781–2788.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Kermoal, J. P., Schumacher, L., Pedersen, K. I., Mogensen, P. E., & Frederik-Sen, F. (2002). A stochastic MIMO radio channel model with experimental validation. IEEE Journal on Selected Area in Communications, 20(6), 1211–1226.CrossRefGoogle Scholar
  7. 7.
    Heath, R. W., & Paulraj, A. J. (2000). Switching between multiplexing and diversity based on constellation distance. In Proceedings of Allerton conference on communication, control and computing (pp. 212–221).Google Scholar
  8. 8.
    Antonio, F., et al. (2007). Adaptive MIMO transmission for exploiting the capacity of spatially correlated channels. IEEE Transaction on Vehicular Technology, 56(2), 619–630.CrossRefGoogle Scholar
  9. 9.
    Mestre, X., Fonollosa, J. R., & Zamora, A. P. (2003). Capacity of MIMO channels: Asymptotic evaluation under correlated fading. IEEE Journal on Selected Areas in Communications, 21(5), 829–838.CrossRefGoogle Scholar
  10. 10.
    Gore, D., Heath, R. W., & Paulraj, A. (2002). Transmit selection in spatial multiplexing systems. IEEE Communications Letters, 6(11), 491–493.CrossRefGoogle Scholar
  11. 11.
    Telatar, E. (1999). Capacity of multi-antenna Gaussian channels. European Transaction on Telecommunications, 10, 585–595.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Young, S. C., Kim, J., Yang, W. Y., & Kang, C. G. (2010). MIMO-OFDM wireless communications with MatLab. London: Wiley.Google Scholar
  13. 13.
    Michael, K. N. (2003). Circulant and skew-circulant splitting methods for Toeplitz systems. Journal of Computational and Applied Mathematics, 159, 101–108.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Haykin, S. (1991). Adaptive filter theory. Upper Saddle River, NJ: Prentice-Hall.MATHGoogle Scholar
  15. 15.
    Pang, H., Wang, X., Huang, K., & Jiang, J. (2012). The eigenvalue decomposition method for wireless physical layer security. In: 14th IEEE international conference on communication technology (ICCT), Chengdu, China (pp 594–598).Google Scholar
  16. 16.
    Mohammed, A. H., & Jawad A. K. H. (2002). Block eigenvalue decomposition using n-th roots of the identity matrix. In: Proceedings of the 41st IEEE, conference in decision and control, Las Vegas, USA (pp 2119–2124).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Md. Abdul Latif Sarker
    • 1
  • Moon Ho Lee
    • 1
  • Sunil Chinnadurai
    • 1
  1. 1.Department of Electronic and Information EngineeringChonbuk National UniversityJeonjuKorea

Personalised recommendations