Advertisement

Wireless Personal Communications

, Volume 99, Issue 4, pp 1661–1682 | Cite as

Improving Wireless Sensor Networks Durability Through Efficient Sink Motion Strategy: TMSRP

  • Djamila Mechta
  • Saad Harous
  • Ismahene Alem
Article
  • 69 Downloads

Abstract

Due to the huge potential profit that sensor networks may provide in industrial and socio-economic areas, they attract the attention of many researchers around the world. However, their development level has not reached an acceptable status due to several barriers. Each sensor is equipped with a battery but of limited energy which causes major obstacle on the lifetime of the network. These sensors have communicated with the sink which might be far away. A mobile sink can be considered as an alternative solution to the problems already identified, but it also raises new challenges such as the location of the mobile sink and communication with the sensors. In this paper, we proposed a new robust routing protocol called Tree and Mobile Sink-based Routing Protocol. This protocol is based on the intra-cluster multi-hop concept using a constructed tree for data routing and a new strategy for sink mobility to collect data from cluster heads. In order to evaluate the performance of algorithm, we implemented it using the NS2 network simulator.

Keywords

Energy saving Mobile sink WSN lifetime Optimization Clustering and routing 

References

  1. 1.
    Ahn, S., & Kim, D. (2006). Proactive context-aware sensor networks. In K. Römer, H. Karl, & F. Mattern (Eds.), Wireless sensor networks, LNCS 3868 (p. 3853). Berlin: Springer.Google Scholar
  2. 2.
    Banerjee, T., Xie, B., Jun, J. H., & Agrawal, D. P. (2010). Increasing lifetime of wire less sensor networks using controllable mobile cluster heads. Wireless Communications and Mobile Computing, 10, 313–336.Google Scholar
  3. 3.
    Chen, T. S., Tsai, H., Chang, Y., & Chen, T. C. (2013). Geographic convergecast using mobile sink in wireless sensor networks. Computer Communications, 36(4), 445–458.CrossRefGoogle Scholar
  4. 4.
    Dehni, L., Beennabi, Y., & Krief, F. (2003) LEA2C : Une nouvelle approche de routage dans les réseaux de capteurs pour l’optimisation de la consommation d’énergie, Univ. Paris 13.Google Scholar
  5. 5.
    Ducrocq, T., Mitton, N., & Hauspie, M. (2012). Clustering pour l’optimisation de la durée de vie des réseaux de capteurs sans fil. In 14iemes Rencontres Francophones sur les Aspects Algorithmiques des télécommunications (AlgoTel), La Grande Motte, France.Google Scholar
  6. 6.
    Ghafoor, S., Rehmani, M. H., Cho, S., & Park, S. H. (2014). An efficient trajectory design for mobile sink in a wireless sensor networks. Computers & Electrical Engineering, 40(7), 2089–2100.CrossRefGoogle Scholar
  7. 7.
    Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2002). Energy efficient communication protocol for wireless microsensor networks. Sensor, 2, 258–269.CrossRefGoogle Scholar
  8. 8.
    He, L., Pan, J., & Xu, J. (2013). Progressive approach to reducing data collection latency in wireless sensor networks with mobile elements. IEEE Transactions on Mobile Computing (TMC), 12(7), 1308–1320.CrossRefGoogle Scholar
  9. 9.
    Jafri, M., Javaid, N., & Khan, Z. (2013). Maximizing the lifetime of multi-chain PEGASIS using sink mobility. World Applied Sciences Journal, 21(9), 1283–1289.Google Scholar
  10. 10.
    Kinalis, A., Nikoletseas, S., Patroumpa, D., & Rolim, J. (2012). Biased sink mobility with adaptative stop times for low latency data collection in sensor networks. Information Fusion, 15, 56–63.CrossRefGoogle Scholar
  11. 11.
    Krimer, P., & Musilek, P. (2015). Bio-inspired routing strategies for wireless sensor networks (Vol. 85, pp. 155–181). Basel: Springer International Publishing.Google Scholar
  12. 12.
    Liu, X., Zhao, H., Yang, X., & Li, X. (2013). SinkTrail: A proactive data reporting protocol for wireless sensor networks. IEEE Transactions on Computers (TC), 62(1), 151–162.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mottaghi, S., & Zahabi, M. R. (2015). Optimizing LEACH clustering algorithm with mobile sink and rendezvous nodes. International Journal of Electronics and Communications (AEU), 69(2), 507–514.CrossRefGoogle Scholar
  14. 14.
    Mottaghi, S., & Zahabi, M. (2015). Optimizing LEACH clustering algorithm with mobile sink and rendezvous nodes. AEU-International Journal of Electronics and Communications, 69(2), 507–514.CrossRefGoogle Scholar
  15. 15.
    Nazir, B., & Hasbullah, H. (2010) Mobile sink based routing protocol (MSRP) for prolonging network lifetime in clustered wireless sensor network. In Proceedings of the IEEE international conference on computer applications and industrial electronics (ICCAIE), Kuala Lumpur, Malaysia, pp. 624–629Google Scholar
  16. 16.
    Saad, E., Awadalla, M., & Darwish, R. (2008). A data gathering algorithm for a mobile sink in large-scale sensor networks. In Wireless and mobile communications, on the fourth international conference, pp. 207–213.Google Scholar
  17. 17.
    Sen, F., Bing, Q., & Liangrui, T. (2011). An improved energy-efficient pegasis based protocol in wireless sensor networks. Fuzzy Systems and Knowledge Discovery (FSKD), 4, 2230–2233.Google Scholar
  18. 18.
    Senouci, M. R., Mellouk, A., Senouci, H., & Aissani, A. (2012). Performance evaluation of network lifetime spatial-temporal distribution for WSN routing protocols. Journal of Network and Computer Applications, 35, 1317–1328.CrossRefGoogle Scholar
  19. 19.
    Shi, L., Zhang, B., Mouftah, H. T., & Ma, J. (2013). DDRP: An efficient data-driven routing protocol for wireless sensor networks with mobile sinks. International Journal of Communication Systems, 26, 1341–1355.Google Scholar
  20. 20.
    Shi, L., Zhang, B., Mouftah, H., & Ma, J. (2013). DDRP : An efficient data-driven routing protocol for wireless sensor networks with mobile sinks. International Journal of Communication Systems, 26(10), 1341–1355.Google Scholar
  21. 21.
    Vecchio, M., Viana, A., Ziviani, A., & Friedman, R. (2010). Deep: Density-based proactive data dissemination protocol for wireless sensor networks with uncontrolled sink mobility. Computer Communications, 33(8), 929–939.CrossRefGoogle Scholar
  22. 22.
    Yu, F., Park, S., Lee, E., & Kim, S. H. (2010). Elastic routing: A novel geographic routing for mobile sinks in wireless sensor networks. IET Communications, 4, 716–727.CrossRefGoogle Scholar
  23. 23.
    Zhao, M., & Yang, Y. (2012). Bounded relay hop mobile data gathering in wireless sensor networks. IEEE Transactions on Computers (TC), 61(2), 265–277.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Sciences, Computer Science Department, LRSD LaboratoryFerhat ABBAS UniversitySétif-1Algeria
  2. 2.College of Information TechnologyUAE UniversityAl AinUAE
  3. 3.Algeria TELecom (ACTEL)SétifAlgeria

Personalised recommendations