Skip to main content
Log in

Design and Implementation of Fault Current Limiters in Distribution System Using Internet of Things

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

One of the essential execution of a wireless sensor network is observing hardware. Wireless Sensor Network are capable for taken a toll effective checking over gigantic geo location. Development of keen network depends on the Internet of Things (IoT). Nowadays the fault current levels are increased because of the increasing power demand. Fault Current Limiter(FCL) is used as a protective device to reduce the fault current in distribution system. This paper presents Solid State Fault Current Limiter (SSFCL) and Hybrid Fault Current Limiter (HFCL) to limit the fault current levels for different fault conditions. Also this paper presents the comparison between these two devices with fault current limiting ratio. The performance of the two devices is carried over in IEEE 6-bus system. The simulation and experimental results validate the performance of these two devices to reduce the fault current. The proposed model is executed with SSFCL and HFCL for 60 W three-phase load under various fault conditions. All the fault conditions are observed and controlled through IoT cloud framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

ω :

Angular frequency

CP :

Volumetric effective specific heat of HTS

E0 :

Electric field for transition from superconducting state to flux-flow state

E1 :

Electric field at superconducting region

E2 :

Electric field at flux-flow region

E3 :

Electric field at normal conducting region

Ec :

Electric field density

IFCL :

Fundamental current of FCL

Ilim :

Limited fault current

J:

Current density

Jc :

Critical current density

LFCL :

Inductance of limiting reactor

T:

Thickness of HTS

Tc :

Critical temperature of the HTS material

V:

Magnitude of system phase voltage

W:

Width of HTS

ZFCL :

Impedance of limiting reactor

Α:

Exponent value during superconducting state

Β:

Exponent value during flux-flow state

Ρ:

Normal resistivity

References

  1. Yu, J., & Zhang, X. (2011). The application of Internet of Things technologies in transmission link of smart grid. In H. Deng, D. Miao, F. L. Wang, & J. Lei (Eds.), Emerging research in artificial intelligence and computational intelligence (AICI 2011) Communications in Computer and Information Science (Vol. 237). Berlin: Springer.

  2. Huang, J., Huang, C., Huang, X., Zhang, J., & He, J. (2012). Panoramic CIM model of power equipment at converter station based on IOT. In Y. Wang, & X. Zhang (Eds.), Internet of Things. Communications in Computer and Information Science (Vol. 312). Berlin: Springer.

  3. Shahriari, S. A. A., Yazdian, A., & Haghifam, M. R. (2009). Fault current limiter allocation and sizing in distribution system in presence of distributed generation. In 2009 IEEE power & energy society general meeting, Calgary, AB (pp. 1–6). https://doi.org/10.1109/pes.2009.5275298.

  4. Sharma, J. P., & Chauhan, V. (2014). Application of solid state fault current limiter on express feeder for voltage sag mitigation. In 2014 IEEE international conference on computational intelligence and computing research, Coimbatore (pp. 1–4).

  5. Ahmed, M. M. R., Putrus, G. A., & Ran, L. (2002). Power quality improvement using a solid-state fault current limiter. In IEEE/PES transmission and distribution conference and exhibition (Vol. 2, pp. 1059–1064).

  6. Nasereddine, R., Amor, I., Massoud, A., & Ben Brahim, L. (2013). AC solid state circuit breakers for fault current limitation in distributed generation. In 2013 7th IEEE GCC conference and exhibition (GCC), Doha (pp. 446–449).

  7. Alsalemi, S., Almadhoun, S., Najad, M., & Massoud, A. (2016). A full bridge-based fault current controller for distributed generation systems. In 2016 IEEE symposium on computer applications & industrial electronics (ISCAIE), Penang (pp. 165–170).

  8. Xiaodan, C., Yazhou, L., Wei, L., Bijun, L., Zhongqing, S., Chenxi, W., et al. (2016). Effects of fault current limiter on the safety and stability of power grid and its application: A research review. In 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Xi’an (pp. 2494–2498).

  9. Boribun, B., & Kulworawanichpong, T. (2008). Comparative study on a fault current limiter with thyristor-controlled impedances. In 2008 13th international conference on harmonics and quality of power, Wollongong, NSW (pp. 1–5).

  10. Liu, Y., Farnell, C., Zhang, H., Escobar-Mejía, A., Mantooth, H. A., Balda, J. C., et al. (2014). A silicon carbide fault current limiter for distribution systems. In 2014 IEEE energy conversion congress and exposition (ECCE), Pittsburgh, PA (pp. 4972–4977).

  11. Ghanbari, T., & Farjah, E. (2012). Development of an efficient solid-state fault current limiter for microgrid. IEEE Transactions on Power Delivery, 27(4), 1829–1834.

    Article  Google Scholar 

  12. Fereidouni, A. R., Vahidi, B., & Hosseini Mehr, T. (2013). The impact of solid state fault current limiter on power network with wind-turbine power generation. IEEE Transactions on Smart Grid, 4(2), 1188–1196.

    Article  Google Scholar 

  13. Radmanesh, H., Fathi, S. H., Gharehpetian, G. B., & Heidary, A. (2016). Bridge-type solid-state fault current limiter based on AC/DC reactor. IEEE Transactions on Power Delivery, 31(1), 200–209.

    Article  Google Scholar 

  14. Feng, Y., Johnson, E., Saadeh, O., Balda, J. C., Mantooth, H. A., & Schupbach, M. (2010). Impact of solid-state fault current limiters on protection equipment in transmission and distribution systems. In IEEE PES T&D 2010, New Orleans, LA, USA (pp. 1–6).

  15. Vaishnavi, B. V., Angelin Suji, R. S., Trivenishree, D. P., Sowmya, G. J., & Nabi, N. (2016). Superconducting fault current limiter & its application. International Journal of Scientific & Engineering Research, 7(5), ISSN 2229-5518.

  16. Elmitwally, A. (2009). Proposed hybrid superconducting fault current limiter for distribution systems. International Journal of Electrical Power & Energy Systems, 31(10), 619–625.

    Article  Google Scholar 

  17. Choe, W. J., Sim, J. W., Lee, G. H., Bang, S. H., Park, K.-B., Kim, Y. et al. (2011). The test and installation of medium class (22.9 kV) hybrid type fault current limiter in KEPCO grid. In CIRED (pp. 1–4).

  18. Tixador, P., Brunet, Y., Leveque, J., & Pham, V. D. (1992). Hybrid superconducting AC fault current limiter principle and previous studies. IEEE Transactions on Magnetics, 28(1), 446–449.

    Article  Google Scholar 

  19. Naresh, M., Singh, N. K., & Singh, A. K. (2016). Superconducting fault current limiter for grid connected power system protection. In 2016 IEEE international conference on industrial technology (ICIT), Taipei (pp. 576–581).

  20. Chen, Y., et al. (2014). Design and application of a superconducting fault current limiter in DC systems. IEEE Transactions on Applied Superconductivity, 24(3), 1–5.

    Google Scholar 

  21. Lei, F., Gou, R., Zhang, W., & Yang, X. (2011). Type and characteristic analysis of fault current limiter. In 2011 1st international conference on electric power equipment-switching technology (ICEPE-ST) (pp. 356–361). IEEE.

  22. Ruiz, H. S., Zhong, Z., & Coombs, T. A. (2015). Resistive type superconducting fault current limiters: Concepts, materials, and numerical modelling. IEEE Transactions on Applied Superconductivity, 25(3) 1–5.

    Article  Google Scholar 

  23. Nemdili, S., & Belkhiat, S. (2012). Modeling and simulation of resistive superconducting fault-current limiters. Journal of Superconductivity and Novel Magnetism, 25(7), 2351–2356. https://doi.org/10.1007/s10948-012-1685-z.

    Article  Google Scholar 

  24. Ye, L., & Campbell, A. (2006). Behavior investigation of super conducting current limiters in power systems. IEEE Transactions on Applied Superconductivity, 16(2), 662–665.

    Article  Google Scholar 

  25. Kalsi, S., & Malozemoff, A. (2004). HTS fault current limiter concept. In IEEE power engineering society general meeting (pp. 1426–1430).

  26. Elschner, S., Kudymow, A., Fink, S., Goldacker, W., Grilli, F., Schacherer, C., et al. (2011). ENSYSTROB—Resistive fault current limiter based on coated conductors for medium voltage application. IEEE Transactions on Applied Superconductivity, 21(3), 1209–1212.

    Article  Google Scholar 

  27. de Sousa, W. T. B., Polasek, A., Silva, F. A., Dias, R., Jurelo, A. R., & de Andrade, R. (2012). Simulations and tests of MCP-BSCCO-2212 superconducting fault current limiters. IEEE Transactions on Applied Superconductivity, 22(2), 5600106.

    Article  Google Scholar 

  28. Steurer, M., Brechna, H., & Frohlich, K. (2000). A nitrogen gas cooled hybrid high temperature superconducting fault current limite. IEEE Transactions on Applied Superconductivity, 10(1), 840–844.

    Article  Google Scholar 

  29. Ahmed, M., Putrus, G., Ran, L., & Penlington, R. (2006). Development of a prototype solid state fault-current limiting and interrupting device for low-voltage distribution networks. IEEE Transactions on Power Delivery, 21(4), 1997–2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gomathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomathi, S., Venkatesan, T. & Sri Vidhya, D. Design and Implementation of Fault Current Limiters in Distribution System Using Internet of Things. Wireless Pers Commun 102, 2643–2666 (2018). https://doi.org/10.1007/s11277-018-5281-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5281-9

Keywords

Navigation