Skip to main content

Advertisement

Log in

IOT Based Augmented Perturb-and-Observe Soft Switching Boost Converters for Photovoltaic Power Systems in Smart Cities

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper focuses on IOT based soft switching boost converter based solar energy applications for smart cities and making cities smarter and greener around the globe. It presents one of the applications of the Internet of Things to design and implementation of a highly efficient boost converter used for powering the Arduino and the Bluetooth device for controlling the switching of the led and buzzer by using smart city applications. The soft switching boost converter is essential to maximize the low-level voltage obtained from the solar board to the enhanced voltage conversion ratio for the efficient electric power generation. In this paper, the three separate methodologies of DC–DC boost converters with additional resonant/snubber circuit and resistive load associated with solar panel modules proposed with maximum power point tracking (MPPT) control. The MPPT is obtained by modified augmented perturb and observe algorithm. IoT helps Smart City(SC) systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. It is utilized to extract the most extreme power from solar panel by controlling the duty ratio of the suggested soft switching based boost converter. In this paper a smart IOT system is used to control and monitoring the effect of reference power variations, parameter values to the voltage control to the converter. The solar panel, boost converter and the MPPT is modeled using MATLAB/SIMULINK environment and reach the power transfer efficiency up to 97%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. George, C. K., & Antonio, T. A. (2013). Non-linear voltage regulator design for DC/DC boost converters used in photovoltaic applications: Analysis and experimental results. IET Renewable Power Generation, 7(3), 296–308.

    Article  Google Scholar 

  2. Ishaque, K., Salam, Z., & Syafaruddin, (2011). A comprehensive MATLAB Simulink PV system simulator with partial shading capability based on the two-diode model. Solar Energy, 85(9), 2217–2227.

    Article  Google Scholar 

  3. Bennett, T., Zilouchian, A., & Messenger, R. (2012). Photovoltaic model and converter topology considerations for MPPT purposes. Solar Energy, 86(7), 2029–2040.

    Article  Google Scholar 

  4. Jaber, A. A. Q., Jiang, Y., & Orabi, M. (2014). Mppt control and architecture for pv solar panel with sub-module integrated converters. Journal of Power Electronics, 14(6), 1281–1292.

    Article  Google Scholar 

  5. Kamarzaman, N. A., & Tan, C. W. (2014). A comprehensive review of maximum power point tracking algorithms for photovoltaic systems. Renewable and Sustainable Energy Reviews, 37, 585–598.

    Article  Google Scholar 

  6. Mohamed, A. E., Mohamed, A. F., & Nasr, A. (2016). Modeling and evaluation of main maximum power point tracking algorithms for photovoltaics systems. Renewable and Sustainable Energy Reviews, 58, 1578–1586.

    Article  Google Scholar 

  7. Rezk, H., & Ali, M. E. (2015). A comprehensive comparison of different MPPT techniques for photovoltaic systems. Solar Energy, 112, 1–11.

    Article  Google Scholar 

  8. Ozcelik, M. A., & Yilmaz, A. S. (2015). Improving the performance of MPPT in PV systems by modified Perturb-and-Observe algorithm. Journal of Engineering Research, 3(3), 77–96.

    Article  Google Scholar 

  9. Mukti, R. J., & Islam, A. (2015). Modeling and performance analysis of pv module with maximum power point tracking in matlab/simulink. Applied Solar Energy, 51(4), 245–252.

    Article  Google Scholar 

  10. Taghvaee, M. H., Radzi, M. A. M., Moosavain, S. M., Hizam, H., & Marhaban, M. H. (2013). A current and future study on non-isolated DC–DC converters for photovoltaic applications. Renewable and Sustainable Energy Reviews, 17, 216–227.

    Article  Google Scholar 

  11. Kulkarni, A., & John, V. (2016). HF Transformer based grid-connected inverter topology for photovoltaic systems. IETE Technical Review, 33(1), 69–75.

    Article  Google Scholar 

  12. Islam, M., Mekhilef, S., & Hasan, M. (2015). Single phase transformerless inverter topologies for grid-tied photovoltaic system: A review. Renewable and Sustainable Energy Reviews, 45, 69–86.

    Article  Google Scholar 

  13. Patrao, I., Figueres, E., Gonzalez-Espin, F., & Garcera, G. (2011). Transformerless topologies for grid-connected single-phase photovoltaic inverters. Renewable and Sustainable Energy Reviews, 15(7), 3423–3431.

    Article  Google Scholar 

  14. Yang, Y., & Blaabjerg, F. (2015). Overview of single-phase grid-connected photovoltaic systems. Electric Power Components and Systems, 43(12), 1352–1363.

    Article  Google Scholar 

  15. Du, Y., & Lu, D. D. (2012). Battery-integrated boost converter utilizing distributed MPPT configuration for photovoltaic systems. Solar Energy, 85(9), 1992–2002.

    Article  Google Scholar 

  16. Tseng, S., & Tsai, C. (2012). Photovoltaic power system with an interleaving boost converter for battery charger applications. International Journal of Photoenergy. Article ID 936843, 1–15.

  17. Tseng, S., & Wang, H. (2013). A photovoltaic power system using a high step-up converter for dc load applications. Energies, 6(2), 1068–1100.

    Article  Google Scholar 

  18. Abusorrah, A., Al-Hindawi, M. M., Al-Turki, Y., Mandal, K., Giaouris, D., Banerjee, S., et al. (2013). Stability of a boost converter fed from photovoltaic source. Solar Energy., 98, 458–471.

    Article  Google Scholar 

  19. Freitas, A. A. A., Tofoli, F. L., Junior, E. M. S., Daher, S., & Antunes, F. L. M. (2015). High-voltage gain DC–DC boost converter with coupled inductors for photovoltaic systems. IET Power Electronics, 8(10), 1885–1892.

    Article  Google Scholar 

  20. Sundar, G., Karthick, N., & Reddy, S. R. (2014). High step–up DC–DC converter for ac photovoltaic module with mppt control. Journal of Electrical Engineering, 65(4), 248–253.

    Article  Google Scholar 

  21. Chen, H., & Lin, W. (2014). Mppt and voltage balancing control with sensing only inductor current for photovoltaic-fed, three-level, boost-type converters. IEEE Transactions on Power Electronics, 29(1), 29–35.

    Article  Google Scholar 

  22. Choi, W., & Lee, C. (2012). Photovoltaic panel integrated power conditioning system using a high efficiency step-up DC–DC converter. Renewable Energy, 41, 227–234.

    Article  Google Scholar 

  23. Abdi, B., Safaei, A., Moghani, J. S., & Abyaneh, H. A. (2013). An overview to soft-switching boost converters for photovoltaic. International Journal of Computer and Electrical Engineering, 5(1), 18–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Barsana Banu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banu, J.B., Moses, M.B. IOT Based Augmented Perturb-and-Observe Soft Switching Boost Converters for Photovoltaic Power Systems in Smart Cities. Wireless Pers Commun 102, 2619–2641 (2018). https://doi.org/10.1007/s11277-018-5280-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5280-x

Keywords

Navigation