Skip to main content
Log in

Novel Fault-Tolerant Decompression Method of Corrupted Huffman Files

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Data compression and decompression have been widely applied in modern communication and data transmission fields. But how to decompress corrupted lossless compressed files is still a challenge. This paper presents a fault-tolerant decompression (FTD) method for corrupted Huffman files. It is achieved by utilizing source prior information and heuristic method. In this paper, we propose to use Huffman coding rules and grammar rules to model the source prior. According to the source prior information, we can roughly estimate the range of error bits. As for error correction, a heuristic algorithm is developed to determine the accurate positions of error bits and correct the errors. The experimental results demonstrate that the proposed FTD method can achieve a correction rate of 96.84% for corrupted Huffman files when the source prior information is accurate. More importantly, the proposed method is a general model that can be applied to decompress various types of lossless compressed files of which the original files are natural language texts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hilbert, M., & Lopez, P. (2011). The world’s technological capacity to store, communicate, and compute information. Science, 332(6025), 60–65.

    Article  Google Scholar 

  2. Hamschin, B. M., Ferguson, J. D., & Grabbe, M. T. (2017). Interception of multiple low-power linear frequency modulated continuous wave signals. IEEE Transactions on Aerospace and Electronic Systems, 53(2), 789–804.

    Article  Google Scholar 

  3. Nieto, A., Roman, R., & Lopez, J. (2016). Digital witness: Safeguarding digital evidence by using secure architectures in personal devices. IEEE Network, 30(6), 34–41.

    Article  Google Scholar 

  4. Huang, W.-J., & McCluskey, E. J. (2000). Transient errors and rollback recovery in LZ compression. In Dependable computing, 2000 Pacific Rim international symposium on dependable computing, December 20, 2000 (pp. 128–135).

  5. Murin, Y., Dabora, R., & Gündüz, D. (2014). On joint source channel coding for correlated sources over multiple-access relay channels. IEEE Transactions on Information Theory, 60(10), 6231–6253.

    Article  MathSciNet  MATH  Google Scholar 

  6. Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. New York: Wiley.

    MATH  Google Scholar 

  7. Brejza, M. F., Wang, T., Zhang, W.-b., et al. (2016). Exponential Golomb and rice error correction codes for generalized near-capacity joint source and channel coding. IEEE Access, 4, 7154–7175.

    Article  Google Scholar 

  8. Huang, W.-J., Saxena, N., & McCluskey, E. J. (2000). A reliable LZ data compressor on reconfigurable coprocessors. In 2000 IEEE symposium on field-programmable custom computing machines, April 17–19, 2000 (pp. 249–258).

  9. Zhou, R.-s., & Li, S.-h. (2005). Study on recovery of zip archive data. Computer Development and Applications, 10, 2–3.

    Google Scholar 

  10. Park, B., Savoldi, A., Gubian, P., et al. (2008). Recovery of damaged compressed files for digital forensic purposes. In International conference on multimedia and ubiquitous engineering, April 24–26, 2008 (pp. 365–372).

  11. Li, C.-h., & Zheng, H. (2006). A fault-tolerance decoding algorithm for text compression. Radio Communications Technology, 32(2), 36–38.

    Google Scholar 

  12. Chen, Y.-x., Zhao, H Z Y.-q., et al. (2010). Novel error resilient decoding algorithm for LZW based residual source redundancy. Journal of Wuhan University of Technology, 32(10), 159–163.

    Google Scholar 

  13. Narimani, H., & Khosravifard, M. (2014). Huffman redundancy for large alphabet sources. IEEE Transactions on Information Theory, 60(3), 1412–1427.

    Article  MathSciNet  MATH  Google Scholar 

  14. Higgs, M. B., Perkins, S., & Smith, D. H. (2009). The construction of variable length codes with good synchronization properties. IEEE Transactions on information Theory, 55(4), 1696–1700.

    Article  MathSciNet  MATH  Google Scholar 

  15. Konstantinides, J. M., & Andreadis, I. (2016). Performance analysis for canonical Huffman coding with fixed window size. Electronics Letters, 52(7), 525–527.

    Article  Google Scholar 

  16. Strawn, G. (2014). Claude shannon: Mastermind of information theory. IT Professional, 16(6), 70–72.

    Article  Google Scholar 

  17. Cinlar, E. (2013). Introduction to stochastic processes. Chelmsford: Courier Corporation.

    MATH  Google Scholar 

  18. Manning, C. D., & Schtze, H. (1999). Foundations of statistical natural language processing (pp. 91–92). Cambridge: MIT press.

    Google Scholar 

  19. American National Corpus Project. American national corpus (2002–2015). http://www.anc.org/data/oanc/download/. March 5, 2016.

  20. English e-books (2012–2016). http://english-ebooks.net. July 24, 2016.

  21. Loyal books. (2016). http://www.loyalbooks.com. July 24, 2016.

  22. Siivola, V., Hirsimaki, T., & Virpioja, S. (2007). On growing and pruning kneserney smoothed n-gram models. IEEE Transactions on Audio, Speech and Language Processing, 15(5), 1617–1624.

    Article  Google Scholar 

  23. Maynard, D., Bontcheva, K., & Augenstein, I. (2016). Natural language processing for the semantic web. Synthesis Lectures on the Semantic Web: Theory and Technology, 6(2), 9–23.

    Google Scholar 

  24. Chaurasiya, R. K., Londhe, N. D., & Ghosh, S. (2016). A novel weighted edit distance-based spelling correction approach for improving the reliability of Devanagari script-based p300 speller system. IEEE Access, 4, 8184–8198.

    Article  Google Scholar 

  25. Li, Y.-j., & Liu, B. (2007). A normalized Levenshtein distance metric. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 1091–1095.

    Article  Google Scholar 

  26. Balhaf, K., et al. (2017). Accelerating Levenshtein and Damerau edit distance algorithms using GPU with unified memory. In 2017 8th international conference on information and communication systems (ICICS), April 4–6, 2017 (pp. 7–11).

  27. Yang, A., Han, Y., Pan, Y., et al. (2017). Optimum surface roughness prediction for titanium alloy by adopting response surface methodology. Results in Physics, 7, 1046–1050.

    Article  Google Scholar 

  28. Li, J., Huang, L., Zhou, Y., et al. (2017). Computation partitioning for mobile cloud computing in a big data environment. IEEE Transactions on Industrial Informatics, 13(4), 2009–2018.

    Article  Google Scholar 

  29. Li, J., Yu, F. R., Deng, G., et al. (2017). Industrial internet: A survey on the enabling technologies, applications, and challenges. IEEE Communications Surveys and Tutorials, 19(3), 1504–1526.

    Article  Google Scholar 

  30. Li, J., Deng, G., Luo, C., et al. (2016). A hybrid path planning method in unmanned air/ground vehicle (UAV/UGV) cooperative systems. IEEE Transactions on Vehicular Technology, 65(12), 9585–9596.

    Article  Google Scholar 

  31. Li, J. Q., Li, W. L., Deng, G. Q., et al. (2016). Continuous-behavior and discrete-time combined control for linear induction motor-based Urban Rail Transit. IEEE Transactions on Magnetics, 52(7), 1–4.

    Google Scholar 

  32. Cui, K., Yang, W., & Gou, H. (2017). Experimental research and finite element analysis on the dynamic characteristics of concrete steel bridges with multi-cracks. Journal of Vibro Engineering, 19(6), 4198–4209.

    Article  Google Scholar 

  33. Wei, W., Fan, X., Song, H., et al. (2016). Imperfect information dynamic stackelberg game based resource allocation using hidden Markov for cloud computing. IEEE Transactions on Services Computing, 99, 1–13.

    Google Scholar 

  34. Cui, K., & Zhao, T. T. (2017). Unsaturated dynamic constitutive model under cyclic loading. Cluster Computing, 20(4), 2869–2879.

    Article  MathSciNet  Google Scholar 

  35. Wei, W., Song, H., Li, W., et al. (2017). Gradient-driven parking navigation using a continuous information potential field based on wireless sensor network. Information Sciences, 408, 100–114.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingquan Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Zhao, X. & Sun, Q. Novel Fault-Tolerant Decompression Method of Corrupted Huffman Files. Wireless Pers Commun 102, 2555–2574 (2018). https://doi.org/10.1007/s11277-018-5277-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5277-5

Keywords

Navigation