Skip to main content
Log in

A Human-in-the-Loop Architecture for Mobile Network: From the View of Large Scale Mobile Data Traffic

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Unlike other radio signal services, 5G is anticipated to play a huge role in offering services to heterogeneous networks, technologies, and devices operating in different geographic regions to fulfill the high expectation of users with relatively low energy consumption, which implies the necessity for moving from a system-centric design to a more user- or even human- and data- centric design paradigm “to keep the human in the loop” in future network. It drives us to design a system with capacity to allocate network resource dynamically according to feedback from users. This paper presents a Human-In-The-Loop architecture for mobile network that discovers users’ needs on network resource by understanding data traffic usage behavior of users. Based on real data traffic of mobile network, we analyze data traffic patterns of heavy and normal users from the view of online browsing behavior and urban functional area to explain how and why the data traffic is consumed. Then we propose a Latent Dirichlet Allocation model based solution to correlate data traffic, user behavior, and urban ecology to gain deep insights into spatio-temporal dynamic of data traffic usage behavior for different groups of users. Drawing upon results from a comprehensive study of users in a metropolitan city in China, we achieve a broad understanding about the difference of data traffic usage patterns of heavy and normal user: (1) besides the amount of generated data traffic, two groups of users can be easily distinguished by usage behavior of limited number of applications at midnight, (2) the functions of locations have huge impact on data usage patterns of users, which implies that urban ecology will shape users’ online behavior. The results of this work can potentially be exploited to help to allocate network resource, improve Quality of Experience according to users’ needs, and even design the future network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Brooks, P., & Hestnes, B. (2010). User measures of quality of experience: Why being objective and quantitative is important. IEEE Network, 24(2), 8–13.

    Article  Google Scholar 

  2. Dix, A. (2009). Human-computer interaction. In L. Liu, & M. Tamer Özsu (Eds.), Encyclopedia of database systems (pp. 1327–1331). Boston: Springer.

  3. Liotou, E., Elshaer, H., Schatz, R., Irmer, R., Dohler, M., Passas, N., & Lazaros, M. (2015). Shaping QoE in the 5g ecosystem. In M. LIU (Ed.), Seventh international workshop on quality of multimedia experience (QoMEX), 2015 (pp. 1–6). IEEE.

  4. Cisco Visual Networking Index. (2016). Global mobile data traffic forecast update, 2015–2020 white paper. link: http://goo. gl/ylTuVx.

  5. Yang, J., Qiao, Y., Zhang, X., He, H., Liu, F., & Cheng, G. (2015). Characterizing user behavior in mobile internet. IEEE Transactions on Emerging Topics in Computing, 3(1), 95–106.

    Article  Google Scholar 

  6. Jin, Y., Duffield, N., Gerber, A., Haffner, P., Hsu, W.-L., Jacobson, G., Sen, S., Venkataraman, S., & Zhang, Z.-L. (2012). Characterizing data usage patterns in a large cellular network. In Proceedings of the 2012 ACM SIGCOMM workshop on cellular networks: Operations, challenges, and future design (pp. 7–12). ACM.

  7. Hoteit, S., Secci, S., & Premoli, M. (2017). Crowded spot estimator for urban cellular networks. Annals of Telecommunications. https://doi.org/10.1007/s12243-017-0591-6

    Google Scholar 

  8. A t foaaamiGH KXTatart. Dod modeling and simulation (m & s) glossary.

  9. Karwowski, W. (2001). International encyclopedia of ergonomics and human factors. Boca Raton: CRC Press.

    Google Scholar 

  10. Lu, J., Sookoor, T., Srinivasan, V., Gao, G., Holben, B., Stankovic, J., Field, E., & Whitehouse, K. (2010). The smart thermostat: Using occupancy sensors to save energy in homes. In Proceedings of the 8th ACM conference on embedded networked sensor systems (pp. 211–224). ACM.

  11. Kay, M., Choe, E. K., Shepherd, J., Greenstein, B., Watson, N., Consolvo, S., & Kientz, J. A. (2012). Lullaby: A capture and access system for understanding the sleep environment. In Proceedings of the 2012 ACM conference on ubiquitous computing (pp. 226–234). ACM.

  12. Burnham, G., Seo, J., & Bekey, G. (1974). Identification of human driver models in car following. IEEE Transactions on Automatic Control, 19(6), 911–915.

    Article  Google Scholar 

  13. Sollenberger, R. L., Willems, B., Della Rocco, P. S., Koros, A., & Truitt, T. (2005). Human-in-the-loop simulation evaluating the collocation of the user request evaluation tool, traffic management advisor, and controller-pilot data link communications: Experiment i–tool combinations (DOT/FAA/CT-TN04/28). Atlantic City, NJ: William J. Hughes Technical Center.

  14. Munir, S., Stankovic, J. A., Liang, C.-J. M., & Lin, S. (2013). New cyber physical system challenges for human-in-the-loop control. In Proceedings of the 8th International Workshop Feedback Computing.

  15. Schirner, G., Erdogmus, D., Chowdhury, K., & Padir, T. (2013). The future of human-in-the-loop cyber-physical systems. Computer, 46(1), 36–45.

    Article  Google Scholar 

  16. Ratti, C., Frenchman, D., Pulselli, R. M., & Williams, S. (2006). Mobile landscapes: Using location data from cell phones for urban analysis. Environment and Planning B: Planning and Design, 33(5), 727–748.

    Article  Google Scholar 

  17. Naboulsi, D., Stanica, R., & Fiore, M. (2014). Classifying call profiles in large-scale mobile traffic datasets. In Proceedings of INFOCOM, 2014, IEEE (pp. 1806–1814). IEEE.

  18. Paul, U., Subramanian, A. P., Buddhikot, M. M., & Das, S. R. (2011). Understanding traffic dynamics in cellular data networks. In Proceedings of INFOCOM, 2011, IEEE (pp. 882–890). IEEE.

  19. Keralapura, R., Nucci, A., Zhang, Z.-L., & Gao, L. (2010). Profiling users in a 3g network using hourglass co-clustering. In Proceedings of the sixteenth annual international conference on Mobile computing and networking (pp. 341–352). ACM.

  20. Shafiq, M. Zubair, J., Lusheng, L., Alex X., & Wang, J. (2011). Characterizing and modeling internet traffic dynamics of cellular devices. In Proceedings of the ACM SIGMETRICS joint international conference on Measurement and modeling of computer systems (pp. 305–316). ACM.

  21. Ma, Z., Xie, J., Li, H., Sun, Q., Si, Z., Zhang, J., & Guo, J. (2017). The role of data analysis in the development of intelligent energy networks. arXiv:1705.11132.

  22. Willkomm, D., Machiraju, S., Bolot, J., & Wolisz, A. (2008). Primary users in cellular networks: A large-scale measurement study. In New frontiers in dynamic spectrum access networks, 2008. 3rd IEEE symposium on DySPAN (pp. 1–11). IEEE.

  23. Cerinsek, M., Bodlaj, J., & Batagelj, V. (2013). Symbolic clustering of users and antennae. Net-Mob D4D Challenge, Boston, MA, USA.

  24. Shafiq, M. Z., Ji, L., Liu, A. X., Pang, J., & Wang, J. (2012). Characterizing geospatial dynamics of application usage in a 3g cellular data network. In Proceedings of INFOCOM, 2012, IEEE (pp. 1341–1349). IEEE.

  25. Ma, Z., Xue, J.-H., Leijon, A., Tan, Z.-H., Yang, Z., & Guo, J. (2016). Decorrelation of neutral vector variables: Theory and applications. In IEEE Transactions on Neural Networks and Learning Systems (Vol. PP, no. 99, pp. 1–15).

  26. Candia, J., González, M. C., Wang, P., Schoenharl, T., Madey, G., & Barabási, A.-L. (2008). Uncovering individual and collective human dynamics from mobile phone records. Journal of Physics A: Mathematical and Theoretical, 41(22), 224015.

    Article  MathSciNet  Google Scholar 

  27. Becker, R. A., Cáceres, R., Hanson, K., Loh, J. M., Urbanek, S., Varshavsky, A., & Volinsky, C. (2011). Clustering anonymized mobile call detail records to find usage groups. In Workshop on pervasive and urban applications (PURBA).

  28. Trestian, I., Ranjan, S., Kuzmanovic, A., & Nucci, A. (2009). Measuring serendipity: Connecting people, locations and interests in a mobile 3g network. In Proceedings of the 9th ACM SIGCOMM conference on internet measurement conference (pp. 267–279). ACM.

  29. Ma, Z., & Leijon, A. (2011). Bayesian estimation of beta mixture models with variational inference. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(11), 2160–2173.

    Article  Google Scholar 

  30. Zhang, Y., & Årvidsson, A. (2012). Understanding the characteristics of cellular data traffic. ACM SIGCOMM Computer Communication Review, 42(4), 461–466.

    Article  Google Scholar 

  31. Ma, Z., Rana, P. K., Taghia, J., Flierl, M., & Leijon, A. (2014). Bayesian estimation of dirichlet mixture model with variational inference. Pattern Recognition, 47(9), 3143–3157.

    Article  MATH  Google Scholar 

  32. Gonzalez, M. C., Hidalgo, C. A., & Barabasi A.-L. (2008). Understanding individual human mobility patterns. arXiv preprint arXiv:0806.1256.

  33. Zhou, X., Zhao, Z., Li, R., Zhou, Y., Palicot, J., & Zhang, H. (2013). Human mobility patterns in cellular networks. IEEE Communications Letters, 17(10), 1877–1880.

    Article  Google Scholar 

  34. Song, C., Koren, T., Wang, P., & Barabási, A.-L. (2010). Modeling the scaling properties of human mobility. arXiv preprint arXiv:1010.0436.

  35. Simini, F., González, M. C., Maritan, A., & Barabási, A.-L. (2011). A universal model for mobility and migration patterns. arXiv preprint arXiv:1111.0586.

  36. Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., & Estrin, D. (2010). Diversity in smartphone usage. In Proceedings of the 8th international conference on mobile systems, applications, and services(pp. 179–194). ACM.

  37. Ma, Z., Leijon, A., & Kleijn, W. B. (2013). Vector quantization of LSF parameters with a mixture of Dirichlet distributions. IEEE Transactions on Audio, Speech, and Language Processing, 21(9), 1777–1790.

    Article  Google Scholar 

  38. Qiao, Y., Zhao, X., Yang, J., & Liu, J. (2016). Mobile big-data-driven rating framework: Measuring the relationship between human mobility and app usage behavior. IEEE Network, 30(3), 14–21.

    Article  Google Scholar 

  39. Lim, K.-W., Secci, S., Tabourier, L., & Tebbani, B. (2016). Characterizing and predicting mobile application usage. Computer Communications, 95, 82–94.

    Article  Google Scholar 

  40. Das, A. K., Pathak, P. H., Chuah, C.-N., & Mohapatra, P. (2014). Contextual localization through network traffic analysis. In Proceedings of INFOCOM, 2014, IEEE (pp. 925–933). IEEE.

  41. Wang, H., Xu, F., Li, Y., Zhang, P., & Jin, D. (2015). Understanding mobile traffic patterns of large scale cellular towers in urban environment. In Proceedings of the 2015 ACM conference on internet measurement conference (pp. 225–238). ACM.

  42. Hoteit, S., Secci, S., He, Z., Ziemlicki, C., Smoreda, Z., Ratti, C., & Pujolle, G. (2012). Content consumption cartography of the Paris urban region using cellular probe data. In Proceedings of the first workshop on Urban networking (pp. 43–48). ACM.

  43. Naboulsi, D., Fiore, M., Ribot, S., & Stanica, R. (2015). Mobile traffic analysis: A survey. Université de Lyon, Technical Report hal-01132385.

  44. Telecomitalia. (2015). Big data challenge 2015.

  45. Qiao, Y., Cheng, Y., Yang, J., Liu, J., & Kato, N. (2017). A mobility analytical framework for big mobile data in densely populated area. IEEE Transactions on Vehicular Technology, 66(2), 1443–1455.

    Article  Google Scholar 

  46. Arthur, D., & Vassilvitskii, S. (2007). K-means++: The advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on discrete algorithms (pp. 1027–1035). Society for Industrial and Applied Mathematics.

  47. Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2, 224–227.

    Article  Google Scholar 

  48. Kling, F., Pozdnoukhov, A. (2012). When a city tells a story: Urban topic analysis. In Proceedings of the 20th international conference on advances in geographic information systems (pp. 482–485). ACM.

  49. Griffiths, T. L., Jordan, M. I., Tenenbaum, J. B., & Blei, D. M. (2004). Hierarchical topic models and the nested Chinese restaurant process. In Advances in neural information processing systems (pp. 17–24).

  50. Zheng, Y., Xie, X., Wang, Y., Zheng, K., & Xiong, H. (2015). Discovering urban functional zones using latent activity trajectories. IEEE Transactions on Knowledge and Data Engineering, 27(3), 712–725.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (61671078, 61701031), Director Funds of Beijing Key Laboratory of Network System Architecture and Convergence (2017BKL-NSAC-ZJ-06), and 111 Project of China (B08004, B17007). This work is conducted on the platform of Center for Data Science of Beijing University of Posts and Telecommunications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Y., Yu, J., Lin, W. et al. A Human-in-the-Loop Architecture for Mobile Network: From the View of Large Scale Mobile Data Traffic. Wireless Pers Commun 102, 2233–2259 (2018). https://doi.org/10.1007/s11277-017-5049-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-5049-7

Keywords

Navigation