Skip to main content
Log in

A Compact Hybrid Multiband Antenna for Wireless Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents design of Compact Hybrid Multiband Antenna (CHMA) for various wireless applications. The projected antenna geometry is designed by integrating moore and gosper curves and their characteristics are investigated. The antenna reveals multiband behavior along with satisfactory values of all performance parameters in spite of less complexity and compact size. The small cost simulated antenna is designed on FR4 substrate, which shows gain of 16.65 dB along with return loss of −18.39 dB and VSWR of 1.27 at 2.4 GHz frequency. Simulated results exhibits six operational bands that cover various significant frequency bands like Air traffic control RADAR (0.96–1.215 GHz), GSM (1.85–1.99 GHz), Wi-Fi (2.4 GHz for 802.11b, 802.11n and 802.11g), WLAN 802.11a/b (5.15–5.35 GHz), WLAN 802.11ac (5.5 GHz) and military satellite applications (7.9–8.4 GHz). The simulation results of antenna in terms of antenna parameters like Return Loss (RL), radiation pattern, Voltage Standing Wave Ratio (VSWR) and Gain (G) are evaluated using HFSS (High Frequency Structural Simulator); v13 software. The hybrid antenna is designed with line feed having compact size of 55 mm (L) × 60 mm (W) × 1.6 mm (H) on FR4_epoxy substrate with εr 4.4. Both simulated and measured results are analyzed, compared and presented in the paper. Proposed antenna operates from 0.98 to 8.1 GHz  and covers L, S, C and X band applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Azaro, R., Viani, F., Lizzi, E. Zeni, & Massa, A. (2009). A monopolar quad-band antenna based on a Hilbert self-affine prefractal geometry. IEEE Antennas Wireless Propagation Letter, 8, 177–180.

    Article  Google Scholar 

  2. Azari, A., Ismail, A., Sali, A., & Hashim, F. (2013). A new super wideband fractal monopole-dielectric resonator antenna. IEEE Antennas Wireless Propagation Letter, 12, 1014–1016.

    Article  Google Scholar 

  3. Islam, M. T., Shakib, M. N., & Misran, N. (2009). Multi-slotted microstrip patch antenna for wireless applications. Progress in Electromagnetic Research Letters, 10, 11–18.

    Article  Google Scholar 

  4. Lizzi, L., Viani, F., Zeni, E., & Massa, A. (2009). A DVBH/GSM/UMTS planar antenna for multimode wireless devices. IEEE Antennas Wireless Propagation Letter, 8, 568–571.

    Article  Google Scholar 

  5. Pharwaha, A. P. S., Singh, J., & Kamal, T. S. (2010). Estimation of feed position of rectangular microstrip patch antenna. IE Journal-ET, 91, 20–25.

    Google Scholar 

  6. Singh, J., Singh, A. P., & Kamal, T. S. On the design of triangular microstrip antenna for wireless communication. IP Multimedia Communications A Special Issue from IJCAwww.ijcaonline.org, pp. 103–106.

  7. Parsad, K. D. (2005). Antenna and wave propagation (3rd ed., pp. 809–810). New Delhi:  Satya Parkashan.

    Google Scholar 

  8. Balanis, C. A. (2005). Antenna theory: Analysis and design (3rd ed.). London: Wiley.

    Google Scholar 

  9. Jamil, Yusoff, M. Z., Yahya, N., & Zakariya, M. A. (2011). A compact multiband hybrid Meander–Koch fractal antenna for WLAN USB dongle. In Open systems (ICOS) IEEE conference (pp. 290–293).

  10. Choukiker, Y. K., Sharma, S. K., & Behera, S. K. (2014). Hybrid fractal shape planar monopole antenna covering multiband wireless communication with MIMO implementation for handheld mobile devices. IEEE Transactions on Antennas and Propagation, 62, 1483–1488.

    Article  Google Scholar 

  11. Kumar, Y., & Singh, S. (2015). A quad-band hybrid fractal antenna for wireless applications. In IEEE international advance computing conference: IACC (pp. 730–733).

  12. Kumar, R. A., Choukiker, Y. K., & Behera, S. K. (2012). Design of hybrid fractal antenna for UWB applications. In IEEE ICCEET (international conference on computing, electronics and electrical technologies) (pp. 691–693).

  13. Azaro, R., Debiasi, L., Zeni, E., Benedetti, M., Rocca, P., & Massa, A. (2009). A hybrid prefractal three-band antenna for multistandard mobile wireless applications. IEEE Antennas Wireless Propagation Letter, 8, 905–908.

    Article  Google Scholar 

  14. Choukiker, Y. K., & Behera, S. K. (2011). Design of wideband fractal antenna with combination of fractal geometries. In IEEE conference publication: ICICS (pp. 1–3).

  15. Chen, W. L., Wang, G. M., & Zhang, C. X. (2008). Small-size microstrip patch antennas combining Koch and Sierpinski fractal-shapes. IEEE Antennas and Wireless Propagation Letters, 7, 738–740.

    Article  Google Scholar 

  16. Singh, R., Sappal, A. S., & Bhandari, A. S. (2014). Efficient design of sierpinski fractal antenna for high frequency applications. International Journal of Engineering Research and Applications, 4, 44–48.

    Google Scholar 

  17. Karim, M. N. A., Rahim, M. K. A., Majid, H. A., Ayop, O., Abu, M., & Zubir, F. (2010). Log periodic Fractal Koch antenna for UHF band applications. Progress In Electromagnetics Research (PIER), 100, 201–217.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagtar Singh Sivia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, K., Sivia, J.S. A Compact Hybrid Multiband Antenna for Wireless Applications. Wireless Pers Commun 97, 5917–5927 (2017). https://doi.org/10.1007/s11277-017-4818-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4818-7

Keywords

Navigation