Skip to main content
Log in

Multi-constrained Max–Min Fair Resource Allocation in Multi-channel Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Recent rich applications for the Internet of Things are demanding large bandwidth for communication which can cause congestion within multi-hop wireless sensor and ad hoc networks (WSANs). The capacity of the WSANs can be enhanced by using dual radios that allow concurrent use of multiple available wireless channels. It is a desirable feature that the enhanced capacity can be shared in a max–min fair manner by all existent flows in such multi-channel WSANs. In this paper, we propose a distributed resource allocation solution that achieves max–min fairness among multiple flows in multi-channel WSANs based on hybrid channel assignment. We find that the existence of two different types of enhanced network constraints in hybrid channel assignment-based multi-channel wireless networks leads to a new multi-constraint max–min resource allocation problem. We model the new max–min problem in the network utility maximization framework, with a particular focus on how to deal with resource prices induced by multi-constraints and adjust flow rates in response to the prices in a max–min fair manner. We present extensive simulation results to demonstrate the performance of the proposed distributed solution. We also discuss the trade-off between network throughput and fairness that exist in multi-channel WSANs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aslam, S., Hasan, N. U., Shahid, A., Jang, J. W., & Lee, K. G. (2016). Device centric throughput and QoS optimization for IoTs in a smart building using CRN-techniques. Sensors, 16(10), 1647.

    Article  Google Scholar 

  2. Bersekas, D. P., & Gallager, R. (1992). Data networks. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  3. Chen, L., Low, S. H., & Dolye, J. C. (2005). Joint congestion control and media access control design for ad hoc wireless networks. In IEEE Infocom ’05: 2005. IEEE.

  4. Cheng, H., & Zhuang, W. (2008). An optimization framework for balancing throughput and fairness in wireless networks with QoS support. IEEE Transactions on Wireless Communications, 7, 584–593.

    Article  Google Scholar 

  5. Doddavenkatappa, M., Chan, M. C., & Ananda, A. (2011). A dual-radio framework for mac protocol implementation in wireless sensor networks. In 2011 IEEE International Conference on Communications (ICC) (pp. 1–6). doi:10.1109/icc.2011.5962415.

  6. Giannoulis, A., Salonidis, T., & Knightly, E. (2008). Congestion control and channel assignment in multi-radio wireless mesh networks. In IEEE SECON ’08: 2008. IEEE.

  7. Gogu, A., Nace, D., Chatterjea, S., & Dilo, A. (2014). Max–min fair link quality in WSN based on SINR. Journal of Applied Mathematics, 2014, 11.

    Article  Google Scholar 

  8. Gummeson, J., Ganesan, D., Corner, M. D., & Shenoy, P. (2009). An adaptive link layer for range diversity in multi-radio mobile sensor networks. In INFOCOM 2009 (pp. 154–162). IEEE.

  9. Huang, X., Feng, S., & Zhuang, H. (2011). Jointly optimal congestion control, channel allocation and power control in multi-channel wireless multihop networks. Computer Communications, 34, 1848–1857.

    Article  Google Scholar 

  10. IEEE802.11n: Wireless LAN MAC and PHY Specifications, Amendment 5: Enhancements for higher throughput. IEEE, New York (2009).

  11. Jeong, Y., Kim, J., & Han, S. J. (2011). Interference mitigation in wireless sensor networks using dual heterogeneous radios. Wireless Networks, 17(7), 1699–1713.

    Article  Google Scholar 

  12. Ji, S., Li, Y., & Jia, X. (2011). Capacity of dual-radio multi-channel wireless sensor networks for continuous data collection. In INFOCOM, 2011 Proceedings IEEE (pp. 1062–1070). doi:10.1109/INFCOM.2011.5934880

  13. Kelly, F., et al. (1998). Rate control in communication networks: Shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 49, 237–252.

    Article  MATH  Google Scholar 

  14. Kim, W., Kassler, A. J., Felice, M. D., & Gerla, M. (2010). Urban-X: Towards distributed channel assignment in cognitive multi-radio mesh networks. In IFIP Wireless days’10: 2010 (pp. 1–5). IFIP.

  15. Kim, W., & Park, J. S. (2014). Cross-layer scheduling for multi-users in cognitive multi-radio mesh networks. Wireless Communications and Mobile Computing, 14, 1034–1044.

    Article  Google Scholar 

  16. Kodialam, M., & Nandagopal, T. (2005). Characterizing the capacity region in multi-radio multi-channel wireless mesh networks. In ACM Mobicom’05: 2005 (pp. 73–87). ACM.

  17. Kumar, V. S. A., Marathe, M. V., & Parthasarathy, S. (2005). Algorithmic aspects of capacity in wireless networks. In ACM SIGMETRICS’05: 2005. ACM.

  18. Kyasanur, P., & Vaidya, N. H. (2006). Routing and link-layer protocols for multi-channel multi-interface ad hoc wireless networks. ACM SIGMOBILE MC2R, 10, 31–43.

    Google Scholar 

  19. Lam, R. K., & Chen, K. C. (2013). Congestion control for M2M traffic with heterogeneous throughput demands. In IEEE WCNC ’13. IEEE.

  20. Liao, Y. K., Wang, C. H., Yang, D. N., & Chen, W. T. (2015). Uplink scheduling for LTE 4G video surveillance system. In IEEE WCNC ’15. IEEE.

  21. Lin, G. H. Z., Tang, D., & Qin, J. (2015). QoS-driven jointly optimal power and bandwidth allocation for heterogeneous wireless networks. Electronics Letters, 51(1), 122–124.

    Article  Google Scholar 

  22. Lymberopoulos, D., Priyantha, N., Goraczko, M., & Zhao, F. (2008). Towards energy efficient design of multi-radio platforms for wireless sensor networks. In International conference on information processing in sensor networks, 2008. IPSN ’08 (pp. 257–268). doi:10.1109/IPSN.2008.51.

  23. Maa, X., Lia, F., Hub, F., & Liua, X. (2012). A hybrid channel assignment strategy to qos support of video-streaming over multi-channel ad hoc networks. Journal of Systems and Software, 85(2), 300–308.

    Article  Google Scholar 

  24. Marasevic, J., Stein, C., & Zussman, G. (2014). Max–min fair rate allocation and routing in energy harvesting networks: algorithmic analysis. In MohiHoc. ACM.

  25. Mikhaylov, K., Petjjrvi, J., Mkelinen, M., Paatelma, A., & Hnninen, T. (2015). Modular multi-radio wireless sensor platform for IoT trials with plug&play module connection. In MobiCom’15 (pp. 188–189). ACM.

  26. Mogaibel, H. A., Othman, M., Subramaniam, S., & Hamid, N. A. W. A. (2016). Review of channel assignment approaches in multi-radio multi-channel wireless mesh network. Journal of Network and Computer Applications, 72(C), 113–139.

    Article  Google Scholar 

  27. Nace, D., Doan, L., Klopfenstein, O., & Bashllari, A. (2008). Max–min fairness in multi-commodity flows. Computers and Operations Research, 35, 557–573.

    Article  MathSciNet  MATH  Google Scholar 

  28. Pioro, M., Zotkiewicz, M., Staehle, B., Staehle, D., & Yuan, D. (2014). On max–min fair flow optimization in wireless mesh networks. Ad Hoc Networks, 13, 134–152.

    Article  Google Scholar 

  29. Raman, V., & Vaidya, N. H. (2010). Short: A static-hybrid approach for routing real time applications over multichannel, multihop wireless networks. WWIC, 2010, 77–94.

    Google Scholar 

  30. Shi, H., Prasad, R. V., Onur, E., & Niemegeers, I. G. M. M. (2014). Fairness in wireless networks—Issues, measures and challenges. IEEE Communications Surveys & Tutorials, 16, 5–24.

    Article  Google Scholar 

  31. Shi, Y., Hou, Y. T., Liu, J., & Kompella, S. (2009). How to correctly use the protocol interference model for multi-hop wireless networks. In ACM MobiHoc ’09: 2009. ACM.

  32. Si, W., Selvakennedy, S., & Zomaya, A. Y. (2010). An overview of channel assignment methods for multi-radio multi-channel wireless mesh networks. Journal of Parallel Distributed Computing, 70(5), 505–524.

    Article  MATH  Google Scholar 

  33. Skalli, H., Ghosh, S., Das, S. K., Lenzini, L., & Conti, M. (2007). Channel assignment strategies for multiradio wireless mesh networks: Issues and solutions. IEEE Communications Magazine, 45(11), 86–93.

    Article  Google Scholar 

  34. Sridharan, A., & Krishnamachari, B. (2009). Maximizing network utilization with max–min fairness in wireless sensor networks. Wireless Networks, 15(5), 585–600.

    Article  Google Scholar 

  35. Srikant, R. (2003). The mathematics of Internet congestion control. Birkhauser: Walter de Gruyter GmbH.

    MATH  Google Scholar 

  36. Stathopoulos, T., Lukac, M., Mclntire, D., Heidemann, J., Estrin, D., & Kaiser, W.: End-to-end routing for dual-radio sensor networks. In INFOCOM 2007. 26th IEEE international conference on computer communications (pp. 2252–2260). IEEE (2007). doi:10.1109/INFCOM.2007.260.

  37. Tahir, Y., Yang, S., Adeel, U., & McCann, J. (2015). Symbiot: Congestion-driven multi-resource fairness for multi-user sensor networks. In IEEE international conference on high performance computing and communications. IEEE.

  38. Tan, L., Zhang, X., Andrew, L. L. H., & Andrew, L. L. H. (2006). Price-based max–min fair rate allocation in wireless multi-hop networks. IEEE Communications Letters, 10, 31–33.

    Article  Google Scholar 

  39. Tang, J., Xue, G., & Zhang, W. (2007). Cross-layer design for end-to-end throughput and fairness enhancement in multi-channel wireless mesh networks. IEEE Transactions on Wireless Communications, 6, 3482–3486.

    Article  Google Scholar 

  40. Tang, J., Xue, G., & Zhang, W. (2009). Cross-layer design for end-to-end rate allocation in multi-radio wireless mesh networks. Wireless Networks, 15, 53–64.

    Article  Google Scholar 

  41. Wang, M., Ci, L., Zhan, P., & Xu, Y. (2008). Multi-channel mac protocols in wireless ad hoc and sensor networks. In ISECS international colloquium on computing, communication, control, and management, 2008. CCCM’08 (Vol. 2, pp. 562–566). IEEE.

  42. Wang, P., Jiang, H., Zhuang, W., & Poor, H. (2008). Redefinition of max–min fairness in multi-hop wireless networks. IEEE Transactions on Wireless Communications, 7, 4786–4791.

    Article  Google Scholar 

  43. Wydrowski, B., Andrew, L. L. H., & Zukerman, M. (2003). Maxnet: A congestion control architecture for scalable networks. IEEE Communications Letters, 7, 511–513.

    Article  Google Scholar 

  44. Wydrowski, B., & Zukerman, M. (2002). Maxnet: A congestion control architecture for maxmin fairness. IEEE Communications Letters, 6, 512–514.

    Article  Google Scholar 

  45. Yoon, W., & Kim, W. (2014). Fair rate control for cognitive multi-channel wireless ad hoc networks. EURASIP Journal on Wireless Communications and Networking, 1, 1–12.

    Google Scholar 

  46. Yoon, W., & Vaidya, N. H. (2012). A link layer protocol and link-state routing protocol suite for multi-channel ad hoc networks. Wireless Communications and Mobile Computing, 12, 85–98.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dong-A University Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonyong Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, W., Yoon, W. Multi-constrained Max–Min Fair Resource Allocation in Multi-channel Wireless Sensor Networks. Wireless Pers Commun 97, 5747–5765 (2017). https://doi.org/10.1007/s11277-017-4807-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4807-x

Keywords

Navigation