Skip to main content
Log in

Compact Chip-Resistor Loaded Active Integrated Patch Antenna for ISM Band Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

As technology is moving towards miniature structures, demand for designing efficient compact antennas is increasing simultaneously. So it would be valuable to improve the features of small antennas, such as bandwidth and gain. A compact chip-resistor loaded microstrip antenna at 2.48 GHz frequency for industrial scientific and medical (ISM) band, with dimensions of 10 × 10 mm2 is presented in this paper. With a novel geometry design, antenna is promoted to an active integrated antenna (AIA) on a two-layer printed circuit board (PCB), which contains passive antenna and active circuitry with a common ground plane. A monolithic amplifier is used to have an improvement around 10 dB in antenna gain. The impedance bandwidth has been increased during chip-resistor loading and adding active circuitry processes. For chip-resistor loaded antenna, that is 5.7 and 9.48% in simulation and measurement respectively. Moreover, the active integrated antenna has the measured impedance bandwidth of 58.7%. Since the low gain and narrow bandwidth of compact microstrip antennas might be a challenge for their operation, by compensating these drawbacks, proposed antenna would become more practical for special medical diagnostic applications, where doctors need stronger signals for monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Greatbatch, W., & Holmes, C. F. (1991). History of implantable devices. IEEE Engineering in Medicine and Biology Magazine, 10(3), 38–41.

    Article  Google Scholar 

  2. Kiourti, A., & Nikita, K. S. (2012). A review of implantable patch antennas for biomedical telemetry: Challenges and solutions. IEEE Antennas and Propagation Magazine, 54(3), 210–228.

    Article  Google Scholar 

  3. Rosen, A., Stuchly, M. A., & Vander, Vorst A. (2002). Applications of RF/microwaves in medicine. IEEE Transactions on Microwave Theory and Techniques, 50(3), 963–974.

    Article  Google Scholar 

  4. Mandal, K., & Sarkar, P. P. (2016). A compact low profile wideband U-shape antenna with slotted circular ground plane. AEU-International Journal of Electronics and Communications, 70(3), 336–340.

    Article  Google Scholar 

  5. Singh, R., Pandey, G. K., Agarwal, M., Singh, H. S., Bharti, P. K., & Meshram, M. K. (2014). Compact planar monopole antenna with dual band notched characteristics using T-Shaped stub and rectangular mushroom type electromagnetic band gap structure for UWB and Bluetooth applications. Wireless Personal Communications, 78(1), 215–230.

    Article  Google Scholar 

  6. Kiourti, A., & Nikita, K. S. (2012). Miniature scalp-implantable antennas for telemetry in the MICS and ISM bands: Design, safety considerations and link budget analysis. IEEE Transactions on Antennas and Propagation, 60(8), 3568–3575.

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu, C., Guo, Y. X., & Xiao, S. (2012). Compact dual-band antenna for implantable devices. IEEE Antennas and Wireless Propagation Letters, 11, 1508–1511.

    Article  Google Scholar 

  8. Lam, K. Y., Luk, K. M., Lee, K. F., Wong, H., & Ng, K. B. (2011). Small circularly polarized U-slot wideband patch antenna. IEEE Antennas and Wireless Propagation Letters, 10, 87–90.

    Article  Google Scholar 

  9. Nasimuddin, Qing, X., & Chen, Z. N. (2011). Compact asymmetric-slit microstrip antennas for circular polarization. IEEE Transactions on Antennas and Propagation, 59(1), 285–288.

    Article  Google Scholar 

  10. Cao, W., Zhang, B., Yu, T., & Li, H. (2010). A single-feed broadband circular polarized rectangular microstrip antenna with chip-resistor loading. IEEE Antennas and Wireless Propagation Letters, 9, 1065–1068.

    Article  Google Scholar 

  11. Chang, K., York, R. A., Hall, P. S., & Itoh, T. (2002). Active integrated antennas. IEEE Transactions on Microwave Theory and Techniques, 50(3), 937–944.

    Article  Google Scholar 

  12. Bilotti, F., Urbani, F., & Vegni, L. (2006). Design of an active integrated antenna for a PCMCIA card. Progress in Electromagnetics Research, 61, 253–270.

    Article  Google Scholar 

  13. Valizade, A., Rezaei, P., & Orouji, A. A. (2014). A new design of dual-port active integrated antenna for 2.4/5.2 GHz WLAN applications. Progress in Electromagnetics Research B, 58, 83–94.

    Article  Google Scholar 

  14. Valizade, A., Rezaei, P., & Orouji, A. A. (2015). Design of reconfigurable active integrated microstrip antenna with switchable blow-noise amplifier/power amplifier performances for wireless local area network and WiMAX applications. IET Microwaves, Antennas and Propagation, 9(9), 872–881.

    Article  Google Scholar 

  15. FCC. Establishment of a Medical Implant Communications Service in the 402–405 MHz band (Federal Register 1999) (pp. 69926–69934).

  16. ERC Recommendation 70-03, relating to the use of short range devices (SRD), European Conference of Postal and Telecommunications Administrations (CEPT). (1997). Annex 12.

  17. Federal Communications Commission. FCC reports. Accessed July 05, 2016, from https://www.fcc.gov/general/medical-device-radiocommunications-service-medradio.

  18. ITU Radio Regulations. (2012). In World Radiocommunication Conference (Geneva). Section 5.138 and 5.150.

  19. Ashok Kumar, S., & Shanmuganantham, T. (2014). Design and analysis of implantable CPW fed bowtie antenna for ISM band applications. AEU-International Journal of Electronics and Communications, 68(2), 158–165.

    Article  Google Scholar 

  20. Atarodi, M., Torkzadeh, P., & Behmanesh, B. (2011). A low power, low phase noise, square wave LC quadrature VCO and its comprehensive analysis for ISM band. AEU-International Journal of Electronics and Communications, 65(5), 458–467.

    Article  Google Scholar 

  21. Karacolak, T., Hood, A. Z., & Topsakal, E. (2008). Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring. IEEE Transactions on Microwave Theory and Techniques, 56(4), 1001–1008.

    Article  Google Scholar 

  22. Noroozi, Z., & Hojjat-Kashani, F. (2012). Three-dimensional FDTD analysis of the dual-band implantable antenna for continuous glucose monitoring. Progress in Electromagnetics Research Letters, 28, 9–21.

    Article  Google Scholar 

  23. Sańchez-Fernańdez, C. J., Quevedo-Teruel, O., Requena-Carrioń, J., Inclań-Sańchez, L., & Rajo-Iglesias, E. (2010). Dual-band microstrip patch antenna based on short-circuited ring and spiral resonators for implantable medical devices. IET Microwaves, Antennas and Propagation, 4(8), 1048–1055.

    Article  Google Scholar 

  24. Soontornpipit, P., Furse, C. M., & Chung, Y. C. (2004). Design of implantable microstrip antenna for communication with medical implants. IEEE Transactions on Microwave Theory and Techniques, 52(8), 1944–1951.

    Article  Google Scholar 

  25. Kiziltas, G., Psychoudakis, D., Volakis, J. L., & Kikuchi, N. (2003). Topology design optimization of dielectric substrates for bandwidth improvement of a patch antenna. IEEE Transactions on Antennas and Propagation, 51(10), 2732–2743.

    Article  Google Scholar 

  26. Wong, K. L. (2002). Compact and broadband microstrip antennas. New York: Wiley.

    Book  Google Scholar 

  27. Wong, K. L., & Lin, Y. F. (1997). Small broadband rectangular microstrip antenna with chip-resistor loading. Electronics Letters, 33(19), 1593–1594.

    Article  Google Scholar 

  28. Huang, C. Y., Wu, J. Y., & Wong, K. L. (1999). Broadband circularly polarised square microstrip antenna using chip-resistor loading. IEE Proceedings-Microwaves, Antennas and Propagation, 146(1), 94–96.

    Article  Google Scholar 

  29. Liu, C., Guo, Y. X., & Xiao, S. (2014). Capacitively loaded circularly polarized implantable patch antenna for ISM band biomedical applications. IEEE Transactions on Antennas and Propagation, 62(5), 2407–2417.

    Article  Google Scholar 

  30. Malekpoor, H., & Jam, S. (2013). Design of an ultra-wideband microstrip patch antenna suspended by shorting pins. Wireless Personal Communications, 71(4), 3059–3068.

    Article  Google Scholar 

  31. Kaya, A. (2008). Meandered slot and slit loaded compact microstrip antenna with integrated impedance tuning network. Progress in Electromagnetics Research B, 1, 219–235.

    Article  Google Scholar 

  32. Biebl, E. M. (2003). RF systems based on active integrated antennas. AEU-International Journal of Electronics and Communications, 57(3), 173–180.

    Article  Google Scholar 

  33. Datasheet. General features of Gali-1+. Accessed July 05, 2016, from http://www.minicircuits.com/pdfs/GALI-1+.pdf.

  34. Datasheet. Typical Performance Curves of Gali-1+. Accessed July 05, 2016, from http://www.minicircuits.com/pages/s-params/GALI-1+_GRAPHS.pdf.

  35. Balanis, C. A. (2005). Antenna theory: Analysis and design. New York: Wiley.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the members of the Antenna Laboratory at Iran Telecommunication Research Centre (ITRC), for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simin Masihi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masihi, S., Rezaei, P. & Panahi, M. Compact Chip-Resistor Loaded Active Integrated Patch Antenna for ISM Band Applications. Wireless Pers Commun 97, 5733–5746 (2017). https://doi.org/10.1007/s11277-017-4806-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4806-y

Keywords

Navigation