Reconstruction of Complex Sparse Signals in Compressed Sensing with Real Sensing Matrices

Abstract

The existing greedy algorithms for the reconstruction in compressed sensing were designed no matter which type the original sparse signals and sensing matrices have, real or complex. The reconstruction algorithms definitely apply to real sensing matrices and complex sparse signals, but they are not customized to this situation so that we could improve those algorithms further. In this paper, we elaborate on the compressed sensing with real sensing matrices when the original sparse signals are complex. We propose two reconstruction algorithms by modifying the orthogonal matching pursuit to include some procedures specialized to this setting. It is shown via analysis and simulation that the proposed algorithms have better reconstruction success probability than conventional reconstruction algorithms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Candes, E. J., & Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Information Theory, 51(12), 4203–4215.

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Candes, E. J., & Tao, T. (2006). Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 52(12), 5406–5425.

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Candes, E. J., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Dai, L., Cui, C., Yu, J., & Liang, H. (2015). Sensing matrix restriction method for compressed sensing radar. Wireless Personal Communications, 84(1), 605–621.

    Article  Google Scholar 

  6. 6.

    Zhang, Y., Fu, X., Zhang, Q., & Liu, X. (2015). Novel compressed sensing algorithm based on modulation classification and symbol rate recognition. Wireless Personal Communications, 80(4), 1717–1732.

    Article  Google Scholar 

  7. 7.

    Angayarkanni, V., & Radha, S. (2016). Design of bandwidth efficient compressed sensing based prediction measurement encoder for video transmission in wireless sensor networks. Wireless Personal Communications, 88(3), 553–573.

    Article  Google Scholar 

  8. 8.

    Xu, W., Lin, J., Niu, K., & He, Z. (2013). On the performance of compressed sensing with partially correct support. Wireless Personal Communications, 69(4), 1877–1884.

    Article  Google Scholar 

  9. 9.

    Zhao, Q., Li, X., & Wu, Z. (2014). Quickest detection of multi-channel based on STFT and compressed sensing. Wireless Personal Communications, 77(3), 2183–2193.

    Article  Google Scholar 

  10. 10.

    Tropp, J. A. (2004). Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on Information Theory, 50(10), 2231–2242.

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Needell, D., & Vershynin, R. (2010). Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE Journal of Selected Topics in Signal Processing, 4(2), 310–316.

    Article  Google Scholar 

  12. 12.

    Needell, D., & Tropp, J. A. (2009). CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3), 301–321.

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Dai, W., & Milenkovic, O. (2010). Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 55(5), 2230–2249.

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Huang, H., & Makur, A. (2011). Backtracking-based matching pursuit method for sparse signal reconstruction. IEEE Signal Processing Letters, 18(7), 391–394.

    Article  Google Scholar 

  15. 15.

    Zeng, L., Zhang, X., Chen, L., & Yang, W. (2014). SegOMP: Sparse recovery with fewer measurements. IEICE Transactions on Fundamentals, E97–A(3), 862–864.

    Article  Google Scholar 

  16. 16.

    Mittleman, D. (2003). Sensing with terahertz radiation. Berlin: Springer.

    Google Scholar 

  17. 17.

    Cumming, I., & Wong, F. (2005). Digital processing of synthetic aperture radar data. Norwood, MA: Artech House.

    Google Scholar 

  18. 18.

    Hayes, M., & Gough, P. (2009). Synthetic aperture sonar: A review of current status. IEEE Journal of Oceanic Engineering, 34(3), 207–224.

    Article  Google Scholar 

  19. 19.

    Webb, A. G. (2003). Introduction to Biomedical Imaging. Hoboken, NJ: Wiley-IEEE Press.

    Google Scholar 

  20. 20.

    Ender, J. H. G. (2010). On compressive sensing applied to radar. Signal Processing, 90(5), 1402–1414.

    Article  MATH  Google Scholar 

  21. 21.

    Yu, S., Khwaja, A. S., & Ma, J. (2012). Compressed sensing of complex-valued data. Signal Processing, 92(2), 357–362.

    Article  Google Scholar 

  22. 22.

    Yang, Z., Zhang, C., & Xie, L. (2012). On phase transition of compressed sensing in the complex domain. IEEE Signal Processing Letters, 19(1), 47–50.

    Article  Google Scholar 

  23. 23.

    Tivive, F. H. C. & Bouzerdoum, A. (2013). A compressed sensing method for complex-valued signals with application to through-the-wall radar imaging. In Proceedings of IEEE international conference on acoustics, speech and signal processing. Vancouver (pp. 2144–2148).

  24. 24.

    Moghadam, A. A. & Radha, H. (2010). Complex sparse projections for compressed sensing. In Proceedings of annual conference on information sciences and systems. Princeton (pp. 1–6).

  25. 25.

    Calderbank, R., Howard, S., & Jafarpour, S. (2010). Construction of a large class of deterministic sensing matrices that satisfy a statistical isometry property. IEEE Journal of Selected Topics in Signal Processing, 4(2), 358–374.

    Article  Google Scholar 

  26. 26.

    Hong, S., Park, H., No, J.-S., Helleseth, T., & Kim, Y.-S. (2014). Near-optimal partial Hadamard codebook construction using binary sequences obtained from quadratic residue mapping. IEEE Transactions on Information Theory, 60(6), 3698–3705.

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Amini, A., & Marvasti, F. (2011). Deterministic construction of binary, bipolar, and ternary compressed sensing matrices. IEEE Transactions on Information Theory, 57(4), 2360–2370.

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Duarte, M. F., Sarvotham, S., Baron. D., Wakin, M. B., & Baraniuk, R. G. (2005). Distributed compressed sensing of jointly sparse signals. In Proceedings of Asilomar conference on signals, systems and computers (pp. 1537–1541).

  29. 29.

    Cotter, S. F., Rao, B. D., Engan, K., & Kreutz-Delgado, K. (2005). Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Transactions on Signal Processing, 53(7), 2477–2488.

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Tropp, J. A., Gilbert, A. C., & Strauss, M. J. (2006). Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit. Signal Processing, 86(3), 572–588.

    Article  MATH  Google Scholar 

  31. 31.

    Gribonval, R., Rauhut, H., Schnass, K., & Vandergheynst, P. (2008). Atoms of all channels, unite! Average case analysis of multi-channel sparse recovery using greedy algorithms. Journal of Fourier Analysis and Applications, 14(5–6), 655–687.

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Sundman, D., Chatterjee, S. & Skoglund, M. (2011). Greedy pursuits for compressed sensing of jointly sparse signals. In Proceedings of European signal processing conference, Barcelona (pp. 368–372).

  33. 33.

    Lee, K., Bresler, Y., & Junge, M. (2012). Subspace methods for joint sparse recovery. IEEE Transactions on Information Theory, 58(6), 3613–3641.

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Blanchard, J. D., Cermak, M., Hanle, D., & Jing, Y. (2014). Greedy algorithms for joint sparse recovery. IEEE Transactions on Signal Processing, 62(7), 1694–1704.

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A01060941) and the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2017-2014-0-00636) supervised by the IITP (Institute for Information & communications Technology Promotion).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dae-Woon Lim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, H., Kim, K., No, J. et al. Reconstruction of Complex Sparse Signals in Compressed Sensing with Real Sensing Matrices. Wireless Pers Commun 97, 5719–5731 (2017). https://doi.org/10.1007/s11277-017-4805-z

Download citation

Keywords

  • Complex sparse signals
  • Compressed sensing
  • Orthogonal matching pursuit (OMP)
  • Real sensing matrices