Skip to main content

A Hybrid Approach to Analyze the Impact of Vehicular Traffic on Performance of 802.11p Protocol for Safety Communications in Vehicular Ad Hoc Networks: A Quantitative Analysis

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


The rapid developments in wireless communications have introduced the vehicular ad hoc networks as an efficient tool to improve the safety of traffic through Dedicated Short Range Communications systems on highways. This paper addresses the broadcast mode of the 802.11p protocol and it quantitatively analyzes the impact of the highway vehicular traffic on its performance in terms of the packet delivery ratio and the packet transmission delay. To this aim, we propose to consider the number of the contending vehicles as a traffic-dependent stochastic counting process, which can be computed by analyzing the inter-vehicle spacing distribution in different traffic conditions. Based on the empirical data, the Lognormal and the Generalized Extreme Value distributions have been chosen to represent the inter-vehicle spacing distribution for a highway scenario in the semi-sparse and the intermediate traffic, respectively. The renewal theory is applied to the inter-vehicle spacing distribution to compute the traffic-dependent counting processes for each traffic condition. Through combination of the resulting counting processes with the performance analysis of the protocol, we propose a hybrid method that can be used to compute the upper bound, the lower bound, and the dominant bound and the probability of reaching to these bounds for desired performance metrics. As a result, the deviation of performance metrics from their average values is analyzed for each traffic condition. Our evaluations show that the accuracy of the proposed hybrid approach is consistent with the empirical results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. Vehicle-to-vehicle.

  2. Vehicle-to-infrastructure.


  1. (2010) Ieee std. 802.11p-2010 part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications amendment 6—Wireless access in vehicular environments.

  2. (2014) Berkely highway laboratory website. Accssed Febraury 1, 2014.

  3. Bai, F., & Krishnamachari, B. (2009). Spatio-temporal variations of vehicle traffic in vanets: Facts and implications. In Proceedings of the sixth ACM international workshop on VehiculAr InterNETworking, ACM, New York, NY, USA, VANET ’09 (pp. 43–52). doi:10.1145/1614269.1614278.

  4. Bastani, S., Landfeldt, B., & Libman, L.(2011). A traffic density model for radio overlapping in urban vehicular ad hoc networks. In IEEE 36th conference on local computer networks (LCN) (pp. 85–92). doi:10.1109/LCN.2011.6115563.

  5. Beaulieu, N., & Rajwani, F. (2004). Highly accurate simple closed-form approximations to lognormal sum distributions and densities. IEEE Communications Letters, 8(12), 709–711. doi:10.1109/LCOMM.2004.837657.

    Article  Google Scholar 

  6. Beaulieu, N., & Xie, Q. (2004). An optimal lognormal approximation to lognormal sum distributions. IEEE Transactions on Vehicular Technology, 53(2), 479–489. doi:10.1109/TVT.2004.823494.

    Article  Google Scholar 

  7. Bianchi, G. (2000). Performance analysis of the ieee 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547. doi:10.1109/49.840210.

    Article  Google Scholar 

  8. Booysen, M. J., Zeadally, S., & van Rooyen, G. J. (2011). Survey of media access control protocols for vehicular ad hoc networks. IET Communications, 5(11), 1619–1631.

    Article  Google Scholar 

  9. Cheng, L., & Panichpapiboon, S. (2012). Effects of intervehicle spacing distributions on connectivity of vanet: A case study from measured highway traffic. IEEE Communications Magazine, 50(10), 90–97. doi:10.1109/MCOM.2012.6316781.

    Article  Google Scholar 

  10. Daley, D., & Vere Jones, D. (2003). An introduction to theory of point processes (2nd ed., Vol. 1, pp. 41–44, Chap. 3). Springer.

  11. Du, Y., Zhang, L., Feng, Y., Ren, Z., & Wang, Z. (2010). Performance analysis and enhancement of ieee 802.11p/1609 protocol family in vehicular environments. In 13th international IEEE conference on intelligent transportation systems (ITSC) (pp. 1085–1090). doi:10.1109/ITSC.2010.5625013.

  12. Ghahramani, S. A. A. G., & Hemmatyar, A. M. A. (2013). A new hybrid model for performance evaluation of IEEE 802.11p broadcast mode in vehicular ad hoc networks: A numerical analysis. In: 2013 international conference on connected vehicles and expo (ICCVE 2013) (pp. 1–7)

  13. Hafeez, K., Zhao, L., Liao, Z., Ma, B. (2010). Performance analysis of broadcast messages in vanets safety applications. In: IEEE global telecommunications conference (GLOBECOM 2010)

  14. Han, C., Dianati, M., Tafazolli, R., Kernchen, R., & Shen, X. (2012). Analytical study of the ieee 802.11p mac sublayer in vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 13(2), 873–886. doi:10.1109/TITS.2012.2183366.

    Article  Google Scholar 

  15. Hassan, M., Vu, H., & Sakurai, T. (2011). Performance analysis of the ieee 802.11 mac protocol for dsrc safety applications. IEEE Transactions on Vehicular Technology, 60(8), 3882–3896. doi:10.1109/TVT.2011.2162755.

    Article  Google Scholar 

  16. Khabbaz, M., Fawaz, W., & Assi, C. (2012). A simple free-flow traffic model for vehicular intermittently connected networks. IEEE Transactions on Intelligent Transportation Systems, 13(3), 1312–1326. doi:10.1109/TITS.2012.2188519.

    Article  Google Scholar 

  17. Li, X., Wu, Z., Chakravarthy, V., & Wu, Z. (2011). A low-complexity approximation to lognormal sum distributions via transformed log skew normal distribution. IEEE Transactions on Vehicular Technology, 60(8), 4040–4045. doi:10.1109/TVT.2011.2163652.

    Article  Google Scholar 

  18. Liu, Z., Almhana, J., & McGorman, R. (2008). Approximating lognormal sum distributions with power lognormal distributions. IEEE Transactions on Vehicular Technology, 57(4), 2611–2617. doi:10.1109/TVT.2007.912338.

    Article  Google Scholar 

  19. Luan, T., Ling, X., & Shen, X. (2012). Mac in motion: Impact of mobility on the mac of drive-thru internet. IEEE Transactions on Mobile Computing, 11(2), 305–319. doi:10.1109/TMC.2011.36.

    Article  Google Scholar 

  20. Ross, S. M. (2007) Introduction to probability models (9th ed., pp. 417–492, Chap. 9). Elsevier.

  21. Mittelhammer, R. C. (2013). Mathematical statistics for economics and business (pp. 677–680, Chap. 10). Springer.

  22. Mittelhammer, R. C. (2013). Mathematical statistics for economics and business (pp. 671–674, Chap. 10). Springer.

  23. Nagel, R. (2010). The effect of vehicular distance distributions and mobility on vanet communications. In IEEE intelligent vehicles symposium (IV) (pp. 1190–1194). doi:10.1109/IVS.2010.5547971

  24. Nie, H., & Chen, S. (2007). Lognormal sum approximation with type iv pearson distribution. IEEE Communications Letters, 11(10), 790–792. doi:10.1109/LCOMM.2007.070842.

    Article  Google Scholar 

  25. Panichpapiboon, S., & Cheng, L. (2013). Irresponsible forwarding under real intervehicle spacing distributions. IEEE Transactions on Vehicular Technology, 62(5), 2264–2272. doi:10.1109/TVT.2013.2240026.

    Article  Google Scholar 

  26. Papoulis, A., & Pillai, S. U. (2002). Probability, random variables and stochastic processes (4th ed.). New York, NY: McGraw-Hill.

    Google Scholar 

  27. Tellambura, C., & Senaratne, D. (2010). Accurate computation of the mgf of the lognormal distribution and its application to sum of lognormals. IEEE Transactions on Communications, 58(5), 1568–1577. doi:10.1109/TCOMM.2010.05.080640.

    Article  Google Scholar 

  28. Wisitpongphan, N., Bai, F., Mudalige, P., Sadekar, V., & Tonguz, O. (2007). Routing in sparse vehicular ad hoc wireless networks. IEEE Journal on Selected Areas in Communications, 25(8), 1538–1556. doi:10.1109/JSAC.2007.071005.

    Article  Google Scholar 

  29. Wu, J., Mehta, N., Zhang, J. (2005). Flexible lognormal sum approximation method. In IEEE Global Telecommunications Conference, GLOBECOM ’05 (Vol. 6, pp. 3413–3417). doi:10.1109/GLOCOM.2005.1578407.

  30. Yan, G., & Olariu, S. (2011). A probabilistic analysis of link duration in vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 12(4), 1227–1236. doi:10.1109/TITS.2011.2156406.

    Article  Google Scholar 

  31. Yin, X. (2013). Performance and reliability evaluation for DSRC vehicular safety communication. PhD thesis, Duke University

  32. Yin, X., Ma, X., & Trivedi, K. (2013). An interacting stochastic models approach for the performance evaluation of dsrc vehicular safety communication. IEEE Transactions on Computers, 62(5), 873–885. doi:10.1109/TC.2012.37.

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhuang, Y., Pan, J., Viswanathan, V., & Cai, L. (2012). On the uplink mac performance of a drive-thru internet. IEEE Transactions on Vehicular Technology, 61(4), 1925–1935. doi:10.1109/TVT.2012.2189424.

    Article  Google Scholar 

  34. Kant, K., & Srinivasan, M. M. (1992) Introduction to computer system performance evaluation (Chap. 5). McGraw-Hill.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ali Mohammad Afshin Hemmatyar.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghahramani, S.A.A.G., Hemmatyar, A.M.A. A Hybrid Approach to Analyze the Impact of Vehicular Traffic on Performance of 802.11p Protocol for Safety Communications in Vehicular Ad Hoc Networks: A Quantitative Analysis. Wireless Pers Commun 97, 4493–4528 (2017).

Download citation

  • Published:

  • Issue Date:

  • DOI: