Wireless Personal Communications

, Volume 97, Issue 3, pp 4493–4528 | Cite as

A Hybrid Approach to Analyze the Impact of Vehicular Traffic on Performance of 802.11p Protocol for Safety Communications in Vehicular Ad Hoc Networks: A Quantitative Analysis

  • Seyyed Amir Ali Ghafourian Ghahramani
  • Ali Mohammad Afshin HemmatyarEmail author


The rapid developments in wireless communications have introduced the vehicular ad hoc networks as an efficient tool to improve the safety of traffic through Dedicated Short Range Communications systems on highways. This paper addresses the broadcast mode of the 802.11p protocol and it quantitatively analyzes the impact of the highway vehicular traffic on its performance in terms of the packet delivery ratio and the packet transmission delay. To this aim, we propose to consider the number of the contending vehicles as a traffic-dependent stochastic counting process, which can be computed by analyzing the inter-vehicle spacing distribution in different traffic conditions. Based on the empirical data, the Lognormal and the Generalized Extreme Value distributions have been chosen to represent the inter-vehicle spacing distribution for a highway scenario in the semi-sparse and the intermediate traffic, respectively. The renewal theory is applied to the inter-vehicle spacing distribution to compute the traffic-dependent counting processes for each traffic condition. Through combination of the resulting counting processes with the performance analysis of the protocol, we propose a hybrid method that can be used to compute the upper bound, the lower bound, and the dominant bound and the probability of reaching to these bounds for desired performance metrics. As a result, the deviation of performance metrics from their average values is analyzed for each traffic condition. Our evaluations show that the accuracy of the proposed hybrid approach is consistent with the empirical results.


VANETs IEEE 802.11p protocol Inter-vehicle spacing distribution Renewal point process Counting process Performance evaluation Packet transmission delay Packet delivery ratio 


  1. 1.
    (2010) Ieee std. 802.11p-2010 part 11: Wireless lan medium access control (mac) and physical layer (phy) specifications amendment 6—Wireless access in vehicular environments.Google Scholar
  2. 2.
    (2014) Berkely highway laboratory website. Accssed Febraury 1, 2014.
  3. 3.
    Bai, F., & Krishnamachari, B. (2009). Spatio-temporal variations of vehicle traffic in vanets: Facts and implications. In Proceedings of the sixth ACM international workshop on VehiculAr InterNETworking, ACM, New York, NY, USA, VANET ’09 (pp. 43–52). doi: 10.1145/1614269.1614278.
  4. 4.
    Bastani, S., Landfeldt, B., & Libman, L.(2011). A traffic density model for radio overlapping in urban vehicular ad hoc networks. In IEEE 36th conference on local computer networks (LCN) (pp. 85–92). doi: 10.1109/LCN.2011.6115563.
  5. 5.
    Beaulieu, N., & Rajwani, F. (2004). Highly accurate simple closed-form approximations to lognormal sum distributions and densities. IEEE Communications Letters, 8(12), 709–711. doi: 10.1109/LCOMM.2004.837657.CrossRefGoogle Scholar
  6. 6.
    Beaulieu, N., & Xie, Q. (2004). An optimal lognormal approximation to lognormal sum distributions. IEEE Transactions on Vehicular Technology, 53(2), 479–489. doi: 10.1109/TVT.2004.823494.CrossRefGoogle Scholar
  7. 7.
    Bianchi, G. (2000). Performance analysis of the ieee 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547. doi: 10.1109/49.840210.CrossRefGoogle Scholar
  8. 8.
    Booysen, M. J., Zeadally, S., & van Rooyen, G. J. (2011). Survey of media access control protocols for vehicular ad hoc networks. IET Communications, 5(11), 1619–1631.CrossRefGoogle Scholar
  9. 9.
    Cheng, L., & Panichpapiboon, S. (2012). Effects of intervehicle spacing distributions on connectivity of vanet: A case study from measured highway traffic. IEEE Communications Magazine, 50(10), 90–97. doi: 10.1109/MCOM.2012.6316781.CrossRefGoogle Scholar
  10. 10.
    Daley, D., & Vere Jones, D. (2003). An introduction to theory of point processes (2nd ed., Vol. 1, pp. 41–44, Chap. 3). Springer.Google Scholar
  11. 11.
    Du, Y., Zhang, L., Feng, Y., Ren, Z., & Wang, Z. (2010). Performance analysis and enhancement of ieee 802.11p/1609 protocol family in vehicular environments. In 13th international IEEE conference on intelligent transportation systems (ITSC) (pp. 1085–1090). doi: 10.1109/ITSC.2010.5625013.
  12. 12.
    Ghahramani, S. A. A. G., & Hemmatyar, A. M. A. (2013). A new hybrid model for performance evaluation of IEEE 802.11p broadcast mode in vehicular ad hoc networks: A numerical analysis. In: 2013 international conference on connected vehicles and expo (ICCVE 2013) (pp. 1–7)Google Scholar
  13. 13.
    Hafeez, K., Zhao, L., Liao, Z., Ma, B. (2010). Performance analysis of broadcast messages in vanets safety applications. In: IEEE global telecommunications conference (GLOBECOM 2010)Google Scholar
  14. 14.
    Han, C., Dianati, M., Tafazolli, R., Kernchen, R., & Shen, X. (2012). Analytical study of the ieee 802.11p mac sublayer in vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 13(2), 873–886. doi: 10.1109/TITS.2012.2183366.CrossRefGoogle Scholar
  15. 15.
    Hassan, M., Vu, H., & Sakurai, T. (2011). Performance analysis of the ieee 802.11 mac protocol for dsrc safety applications. IEEE Transactions on Vehicular Technology, 60(8), 3882–3896. doi: 10.1109/TVT.2011.2162755.CrossRefGoogle Scholar
  16. 16.
    Khabbaz, M., Fawaz, W., & Assi, C. (2012). A simple free-flow traffic model for vehicular intermittently connected networks. IEEE Transactions on Intelligent Transportation Systems, 13(3), 1312–1326. doi: 10.1109/TITS.2012.2188519.CrossRefGoogle Scholar
  17. 17.
    Li, X., Wu, Z., Chakravarthy, V., & Wu, Z. (2011). A low-complexity approximation to lognormal sum distributions via transformed log skew normal distribution. IEEE Transactions on Vehicular Technology, 60(8), 4040–4045. doi: 10.1109/TVT.2011.2163652.CrossRefGoogle Scholar
  18. 18.
    Liu, Z., Almhana, J., & McGorman, R. (2008). Approximating lognormal sum distributions with power lognormal distributions. IEEE Transactions on Vehicular Technology, 57(4), 2611–2617. doi: 10.1109/TVT.2007.912338.CrossRefGoogle Scholar
  19. 19.
    Luan, T., Ling, X., & Shen, X. (2012). Mac in motion: Impact of mobility on the mac of drive-thru internet. IEEE Transactions on Mobile Computing, 11(2), 305–319. doi: 10.1109/TMC.2011.36.CrossRefGoogle Scholar
  20. 20.
    Ross, S. M. (2007) Introduction to probability models (9th ed., pp. 417–492, Chap. 9). Elsevier.Google Scholar
  21. 21.
    Mittelhammer, R. C. (2013). Mathematical statistics for economics and business (pp. 677–680, Chap. 10). Springer.Google Scholar
  22. 22.
    Mittelhammer, R. C. (2013). Mathematical statistics for economics and business (pp. 671–674, Chap. 10). Springer.Google Scholar
  23. 23.
    Nagel, R. (2010). The effect of vehicular distance distributions and mobility on vanet communications. In IEEE intelligent vehicles symposium (IV) (pp. 1190–1194). doi: 10.1109/IVS.2010.5547971
  24. 24.
    Nie, H., & Chen, S. (2007). Lognormal sum approximation with type iv pearson distribution. IEEE Communications Letters, 11(10), 790–792. doi: 10.1109/LCOMM.2007.070842.CrossRefGoogle Scholar
  25. 25.
    Panichpapiboon, S., & Cheng, L. (2013). Irresponsible forwarding under real intervehicle spacing distributions. IEEE Transactions on Vehicular Technology, 62(5), 2264–2272. doi: 10.1109/TVT.2013.2240026.CrossRefGoogle Scholar
  26. 26.
    Papoulis, A., & Pillai, S. U. (2002). Probability, random variables and stochastic processes (4th ed.). New York, NY: McGraw-Hill.Google Scholar
  27. 27.
    Tellambura, C., & Senaratne, D. (2010). Accurate computation of the mgf of the lognormal distribution and its application to sum of lognormals. IEEE Transactions on Communications, 58(5), 1568–1577. doi: 10.1109/TCOMM.2010.05.080640.CrossRefGoogle Scholar
  28. 28.
    Wisitpongphan, N., Bai, F., Mudalige, P., Sadekar, V., & Tonguz, O. (2007). Routing in sparse vehicular ad hoc wireless networks. IEEE Journal on Selected Areas in Communications, 25(8), 1538–1556. doi: 10.1109/JSAC.2007.071005.CrossRefGoogle Scholar
  29. 29.
    Wu, J., Mehta, N., Zhang, J. (2005). Flexible lognormal sum approximation method. In IEEE Global Telecommunications Conference, GLOBECOM ’05 (Vol. 6, pp. 3413–3417). doi: 10.1109/GLOCOM.2005.1578407.
  30. 30.
    Yan, G., & Olariu, S. (2011). A probabilistic analysis of link duration in vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 12(4), 1227–1236. doi: 10.1109/TITS.2011.2156406.CrossRefGoogle Scholar
  31. 31.
    Yin, X. (2013). Performance and reliability evaluation for DSRC vehicular safety communication. PhD thesis, Duke UniversityGoogle Scholar
  32. 32.
    Yin, X., Ma, X., & Trivedi, K. (2013). An interacting stochastic models approach for the performance evaluation of dsrc vehicular safety communication. IEEE Transactions on Computers, 62(5), 873–885. doi: 10.1109/TC.2012.37.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zhuang, Y., Pan, J., Viswanathan, V., & Cai, L. (2012). On the uplink mac performance of a drive-thru internet. IEEE Transactions on Vehicular Technology, 61(4), 1925–1935. doi: 10.1109/TVT.2012.2189424.CrossRefGoogle Scholar
  34. 34.
    Kant, K., & Srinivasan, M. M. (1992) Introduction to computer system performance evaluation (Chap. 5). McGraw-Hill.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Seyyed Amir Ali Ghafourian Ghahramani
    • 1
  • Ali Mohammad Afshin Hemmatyar
    • 2
    Email author
  1. 1.Department of Science and EngineeringSharif University of TechnologyTehranIran
  2. 2.Department of Computer EngineeringSharif University of TechnologyTehranIran

Personalised recommendations