Wireless Personal Communications

, Volume 97, Issue 3, pp 3449–3463 | Cite as

Efficient PAPR Reduction in DCT-SCFDMA System Based on Absolute Exponential Companding Technique with Pulse Shaping

  • Md. Rabiul HossainEmail author
  • Kazi Tanvir Ahmmed


Discrete Cosine Transform based Single carrier frequency division multiple access (DCT-SCFDMA) is a prominent technique for providing high data rates in multimedia services. It also provides high Quality of Service to the users by mitigating the fading of signals. But High peak-to-average power ratio (PAPR) is a technical challenge which reduces the efficiency of RF power amplifiers. In this article, a novel joint scheme of PAPR reduction method is proposed and analyzed based on pulse shaping and absolute exponential companding (AEXP) technique. Our method proposes the use of standard raised cosine filter and square root raised cosine filter along with the AEXP companding process separately in DCT-SCFDMA system for different subcarrier mapping techniques e.g. interleaved frequency division multiple access and localized frequency division multiple access. Through extensive simulations, the numerical analysis presents that proposed architecture achieves significant improvements over the existing standard pulse shaping methods when used alone in DCT-SCFDMA system as far as the lowest PAPR is concerned.





The authors would like to acknowledge the support given by Information and Communication Technology Division; Ministry of Post, Telecommunications and IT; Government of the People’s Republic of Bangladesh through the ICT Fellowship, 2014-2015 program.


  1. 1.
    Al-Kamal, F. S., Hassan, E. S., El-Naby, M. A., Shawki, F., El-Khamy, S. E., Dessouky, M. I., et al. (2015). An efficient transceiver scheme for SC-FDMA systems based on discrete wavelet transform and discrete cosine transform. Wireless Personal Communications, 83(4), 3133. doi: 10.1007/s11277-015-2587-8.CrossRefGoogle Scholar
  2. 2.
    Oppenheim, A. V., Schafer, R. W., & Buck, J. R. (1999). Discrete-Time Signal Processing (2nd ed.). London: Pearson Education.Google Scholar
  3. 3.
    Peng, T., & Beaulieu, N. C. (2006). A comparison of DCT-based OFDM and DFT-based OFDM in frequency offset and fading channels. IEEE Transactions on Communications, 54(11), 2113. doi: 10.1109/TCOMM.2006.884852.CrossRefGoogle Scholar
  4. 4.
    Jinwei, J., Guangliang, R., & Huining, Z. (2015). PAPR reduction of SC-FDMA signals via probabilistic pulse shaping. IEEE Transactions on Vehicular Technology, 64(9), 3999. doi: 10.1109/TVT.2014.2366598.CrossRefGoogle Scholar
  5. 5.
    Myung, H. G., Junsung, L., & Goodman, D. (2006). Single carrier FDMA for uplink wireless transmission. IEEE Vehicular Technology Magazine, 1(3), 30. doi: 10.1109/MVT.2006.307304.CrossRefGoogle Scholar
  6. 6.
    Rana, M. M., Jinsang, K., Won-Kyung, C. (2010) Performance analysis of sub-carrier mapping in LTE uplink systems. In 9th International conference on optical internet pp. 1–3. doi: 10.1109/COIN.2010.5546450
  7. 7.
    Myung, H. G., Junsung, L., Goodman, D. (2006). Peak-to-average power ratio of single carrier FDMA signals with pulse shaping. In IEEE 17th international symposium on personal, indoor and mobile radio communications pp. 1–5. doi: 10.1109/PIMRC.2006.254407
  8. 8.
    Chaudhary, N., Cao, L. (2006). Comparison of compand-filter schemes for reducing PAPR in OFDM. In IEEE wireless communications and networking conference pp. 2070–2075. doi: 10.1109/WCNC.2006.1696615
  9. 9.
    Tao, J., & Guangxi, Z. (2004). Nonlinear companding transform for reducing peak-to-average power ratio of OFDM signals. IEEE Transactions on Broadcasting, 50(3), 342. doi: 10.1109/TBC.2004.834030.CrossRefGoogle Scholar
  10. 10.
    Wu, X., Wang, J., Zhou, B., Mao, Z., & Gao, Z. (2011). Companding schemes based on transforming signal statistics into trigonal distributions for PAPR reduction in OFDM systems. International Journal of Communication Systems, 24(6), 776. doi: 10.1002/dac.1186.CrossRefGoogle Scholar
  11. 11.
    Huang, X., Lu, J., Zheng, J., Chuang, J., & Gu, J. (2001). Reduction of peak-to-average power ratio of OFDM signals with companding transform. Electronics Letters, 37(8), 506. doi: 10.1049/el:20010345.CrossRefGoogle Scholar
  12. 12.
    Tao, J., Yang, Y., & Yong-Hua, S. (2005). Exponential companding technique for PAPR reduction in OFDM systems. IEEE Transactions on Broadcasting, 51(2), 244. doi: 10.1109/TBC.2005.847626.CrossRefGoogle Scholar
  13. 13.
    Bauml, R. W., Fischer, R. F. H., & Huber, J. B. (1996). Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping. Electronics Letters, 32(22), 2056. doi: 10.1049/el:19961384.CrossRefGoogle Scholar
  14. 14.
    Muller, S. H., & Huber, J. B. (1997). OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences. Electronics Letters, 33(5), 368. doi: 10.1049/el:19970266.CrossRefGoogle Scholar
  15. 15.
    Baxley, R. J., & Zhou, G. T. (2007). Comparing Selected Mapping and Partial Transmit Sequence for PAR Reduction. IEEE Transactions on Broadcasting, 53(4), 797. doi: 10.1109/TBC.2007.908335.CrossRefGoogle Scholar
  16. 16.
    Li, W., Gang, W., Lilin, D. Yue, X. (2011). A Time-comain PTS without side information in SC-FDMA systems. In 7th international conference on wireless communications, networking and mobile computing pp. 1–4. doi: 10.1109/wicom.2011.6040420
  17. 17.
    Chin-Liang, W., Sheng-Ju, K., & Chun-Ju, Y. (2010). A low-complexity PAPR estimation scheme for OFDM signals and its application to SLM-based PAPR reduction. IEEE Journal of Selected Topics in Signal Processing, 4(3), 637. doi: 10.1109/JSTSP.2009.2038311.CrossRefGoogle Scholar
  18. 18.
    Ghassemi, A., & Gulliver, T. A. (2008). Partial selective mapping OFDM with low complexity IFFTs. IEEE Communications Letters, 12(1), 4. doi: 10.1109/LCOMM.2008.071397.CrossRefGoogle Scholar
  19. 19.
    Duan, Y., Li, Y., Li, Z., Liu, S., Wu, C. (2012). A new SLM method with feedback searching for uplink SC-FDMA system. In 8th International conference on wireless communications, networking and mobile computing pp. 1–4. doi: 10.1109/WiCOM.2012.6478319
  20. 20.
    Le Goff, S. Y., Al-Samahi, S. S., Boon Kien, K., Tsimenidis, C. C., & Sharif, B. S. (2009). Selected mapping without side information for PAPR reduction in OFDM. IEEE Transactions on Wireless Communications, 8(7), 3320. doi: 10.1109/TWC.2009.070463.CrossRefGoogle Scholar
  21. 21.
    Sayed-Ahmed, A., Shokair, M., El-Rabaie, E. (2012). PAPR reduction for LFDMA using a reduced complexity PTS scheme. In 29th National radio science conference pp. 515–522. doi: 10.1109/NRSC.2012.6208560
  22. 22.
    Wang, Z. (2010). Reduction PAPR of OFDM signals by combining SLM with DCT transform. International Journal of Communications Network and System Sciences, 3(11), 888. doi: 10.4236/ijcns.2011.311120.CrossRefGoogle Scholar
  23. 23.
    Azurdia-Meza, C. A., Lee, K., & Lee, K. (2013). PAPR reduction in single carrier FDMA uplink by pulse shaping using a \(\beta -\alpha\) filter. Wireless personal communications, 71(1), 23. doi: 10.1007/s11277-012-0794-0.CrossRefGoogle Scholar
  24. 24.
    Jinwei, J., Guangliang, R., & Huining, Z. (2014). PAPR reduction in coded SC-FDMA systems via introducing few bit errors. IEEE Communications Letters, 18(7), 1258. doi: 10.1109/LCOMM.2014.2327964.CrossRefGoogle Scholar
  25. 25.
    Al-Kamali, F. S., Dessouky, M., Sallam, B. M., Shawki, F., El-Samie, F. E. A. (2009). A new single carrier FDMA system based on the discrete cosine transform. In International conference on computer engineering & systems pp. 555–560. doi: 10.1109/ICCES.2009.5383071
  26. 26.
    Tao, J., & Yiyan, W. (2008). An overview: Peak-to-average power ratio reduction techniques for OFDM signals. IEEE Transactions on Broadcasting, 54(2), 257. doi: 10.1109/TBC.2008.915770.CrossRefGoogle Scholar
  27. 27.
    Rappaport, T. S. (2001). Wireless communications: principles and practice (2nd ed.). Upper Saddle River: Prentice Hall.zbMATHGoogle Scholar
  28. 28.
    Roy, A., & Doherty, J. F. (2011). Raised cosine filter-based empirical mode decomposition. IET Signal Processing, 5(2), 121. doi: 10.1049/iet-spr.2009.0207.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Mukumoto, K., & Wada, T. (2014). Realization of root raised cosine roll-off filters using a recursive FIR filter structure. IEEE Transactions on Communications, 62(7), 2456. doi: 10.1109/TCOMM.2014.2329672.CrossRefGoogle Scholar
  30. 30.
    Hou, J., Ge, J. H., & Li, J. (2009). Trapezoidal companding scheme for peak-to-average power ratio reduction of OFDM signals. Electronics Letters, 45(25), 1349. doi: 10.1049/el.2009.2180.CrossRefGoogle Scholar
  31. 31.
    Zihao, Y., Lu, I.T., Rui, Y., Jialing, L. (2013). Flexible companding design for PAPR reduction in OFDM and FBMC systems. In International conference on computing, networking and communications pp. 408–412. doi: 10.1109/ICCNC.2013.6504118
  32. 32.
    Myung, H. G., & Goodman, D. J. (2008). Single carrier FDMA: A new air interface for long term evolution. Hoboken: Wiley.CrossRefGoogle Scholar
  33. 33.
    Du, K. L., & Swamy, M. N. S. (2010). Wireless communication systems: From RF subsystems to 4G enabling technologies. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Applied Physics, Electronics & Communication EngineeringUniversity of ChittagongChittagongBangladesh
  2. 2.Department of Electronic EngineeringCity University of Hong KongKowloonHong Kong

Personalised recommendations