Skip to main content
Log in

MIMO Beamforming Architecture in Millimeter Wave Communication Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The recent traffic explosion in wireless communication systems have drawn great attention to the large amount of the underutilized spectrum in millimeter-wave (mm Wave) communication systems as a potential candidate for achieving ten to hundred times more capacity as compared to the current 4G communication system. Designing of an appropriate beamforming scheme in order to overcome the unfavourable path loss is one of the key enabler for communication at 60 GHz frequency band. Multiple antennas in 60 GHz using single input single output (SISO) can only provide diversity and signal to noise ratio (SNR) gain, so multiple input multiple output (MIMO) beamforming is indispensable in further increasing the system throughput. In this work, we propose an efficient MIMO beamforming algorithm to maximize the channel capacity for mm Wave channel. Our research focuses on splitting the large antenna array into \({\mathbf{2\times 2}}\) or higher-order MIMO system, with the objective to maximize the product of the singular values of the partitioned channel matrix, resulting in optimal beamforming vectors, thus maximizing the channel capacity. By applying the proposed MIMO beamforming algorithm, there is atleast \({\mathbf{50\%}}\) increase in capacity of the system to that of SISO beamforming. Simulation is done for both Rayleigh fading and mm Wave channel and is focused on optimizing the beamforming vectors alternatively at the transmitter and receiver. The proposed algorithm is highly effective in high SNR scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Geng, S., Kivinen, J., Zhao, X., & Vainikainen, P. (2009). Millimeter-wave propagation channel characterization for short-range wireless communications. IEEE Transactions on Vehicular Technology, 58, 3–13.

    Article  Google Scholar 

  2. Lu, L., Li, G., Swindlehurst, A., Ashikhmin, A., & Zhang, R. (2014). An overview of massive mimo: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8, 742–758.

    Article  Google Scholar 

  3. Roh, W., Seol, J.-Y., Park, J., Lee, B., Lee, J., Kim, Y., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52, 106–113.

    Article  Google Scholar 

  4. Pisek, E., Abu-Surra, S., Mott, J., Henige, T., & Sharma, R. (Jan 2014). High throughput millimeter-wave MIMO beamforming system for short range communication. In 2014 IEEE 11th consumer communications and networking conference (CCNC) (pp. 537–543).

  5. Torkildson, E., Madhow, U., & Rodwell, M. (2011). Indoor millimeter wave mimo: Feasibility and performance. IEEE Transactions on Wireless Communications, 10, 4150–4160.

    Article  Google Scholar 

  6. Singh, H., Oh, J., Kweon, C., Qin, X., Shao, H.-R., & Ngo, C. (2008). A 60 GHz wireless network for enabling uncompressed video communication. IEEE Communications Magazine, 46, 71–78.

    Article  Google Scholar 

  7. Wells, J. (2009). Faster than fiber: The future of multi-G/s wireless. IEEE Microwave Magazine, 10, 104–112.

    Article  Google Scholar 

  8. Torkildson, E., Sheldon, C., Madhow, U., & Rodwell, M. (Nov 2009). Millimeter-wave spatial multiplexing in an indoor environment. In 2009 IEEE GLOBECOM workshops (pp. 1–6).

  9. Ranvier, S., Kivinen, J., & Vainikainen, P. (May 2005). Development of a 60 GHz MIMO radio channel measurement system. In Proceedings of the IEEE instrumentation and measurement technology conference, 2005 (IMTC 2005) (Vol. 3, pp. 1878–1882).

  10. Huang, K.-C., & Wang, Z. (2006). Millimeter-wave circular polarized beam-steering antenna array for gigabit wireless communications. IEEE Transactions on Antennas and Propagation, 54, 743–746.

    Article  Google Scholar 

  11. Lau, V., Zhang, F., & Cui, Y. (2013). Low complexity delay-constrained beamforming for multi-user MIMO systems with imperfect CSIT. IEEE Transactions on Signal Processing, 61, 4090–4099.

    Article  MathSciNet  Google Scholar 

  12. Huang, X., Guo, Y., & Bunton, J. (2010). A hybrid adaptive antenna array. IEEE Transactions on Wireless Communications, 9, 1770–1779.

    Article  Google Scholar 

  13. Wu, S.-H., Chiu, L.-K., Lin, K.-Y., & Chang, T.-H. (2013). Robust hybrid beamforming with phased antenna arrays for downlink SDMA in indoor 60 GHz channels. IEEE Transactions on Wireless Communications, 12, 4542–4557.

    Article  Google Scholar 

  14. Venkateswaran, V., & van der Veen, A.-J. (2010). Analog beamforming in MIMO communications with phase shift networks and online channel estimation. IEEE Transactions on Signal Processing, 58, 4131–4143.

    Article  MathSciNet  Google Scholar 

  15. Via, J., Santamaria, I., Elvira, V., & Eickhoff, R. (2010). A general criterion for analog Tx-Rx beamforming under OFDM transmissions. IEEE Transactions on Signal Processing, 58, 2155–2167.

    Article  MathSciNet  Google Scholar 

  16. Bharath, B., & Murthy, C. (2013). Channel training signal design for reciprocal multiple antenna systems with beamforming. IEEE Transactions on Vehicular Technology, 62, 140–151.

    Article  Google Scholar 

  17. Xu, H., Kukshya, V., & Rappaport, T. (2002). Spatial and temporal characteristics of 60-GHz indoor channels. IEEE Journal on Selected Areas in Communications, 20, 620–630.

    Article  Google Scholar 

  18. Smulders, P., & Correia, L. (1997). Characterisation of propagation in 60 GHz radio channels. Electronics Communication Engineering Journal, 9, 73–80.

    Article  Google Scholar 

  19. Singh, H., Yong, S.-K., Oh, J., & Ngo, C. (Aug 2009). Principles of IEEE 802.15.3c: Multi-gigabit millimeter-wave wireless pan. In Proceedings of 18th international conference on computer communications and networks, 2009 (ICCCN 2009) (pp. 1–6).

  20. Bajwa, W., Sayeed, A., & Nowak, R. (Jan 2009). Sparse multipath channels: Modeling and estimation. In IEEE 13th digital signal processing workshop and 5th IEEE signal processing education workshop, 2009 (DSP/SPE 2009) (pp. 320–325).

  21. Paulraj, A., GORE, D., Nabar, R., & Bolcskei, H. (2004). An overview of mimo communications-a key to gigabit wireless. Proceedings of the IEEE, 92, 198–218.

    Article  Google Scholar 

  22. Dahl, T., Christophersen, N., & Gesbert, D. (2004). Blind MIMO eigenmode transmission based on the algebraic power method. IEEE Transactions on Signal Processing, 52, 2424–2431.

    Article  MathSciNet  MATH  Google Scholar 

  23. Jafar, S., & Goldsmith, A. (2001). Beamforming capacity and SNR maximization for multiple antenna systems. In IEEE VTS 53rd vehicular technology conference, 2001 (VTC 2001 Spring) (Vol. 1, pp. 43–47).

  24. Van Loan, C. F., & Golub, G. H. (1996). Matrix computations (3rd ed.). Baltimore: Johns Hopkins University Press.

    MATH  Google Scholar 

  25. Zhang, J., Wen, C.-K., Jin, S., Gao, X., & Wong, K.-K. (2013). On capacity of large-scale mimo multiple access channels with distributed sets of correlated antennas. IEEE Journal on Selected Areas in Communications, 31, 133–148.

    Article  Google Scholar 

  26. Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when usingmultiple antennas. Wireless Personal Communications, 6, 311–335.

    Article  Google Scholar 

  27. Ar, E. T., & Telatar, I. E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications, 10, 585–595.

    Article  MathSciNet  Google Scholar 

  28. Gazor, S., & AlSuhaili, K. (2010). Communications over the best singular mode of a reciprocal MIMO channel. IEEE Transactions on Communications, 58, 1993–2001.

    Article  Google Scholar 

  29. Sawada, H., Shoji, Y., & Choi, C.-S. (Dec 2006). “Proposal of novel statistic channel model for millimeter wave wpan,” In Asia-Pacific microwave conference, 2006 (APMC 2006) (pp. 1855–1858).

  30. Narasimhan, T., Raviteja, P., & Chockalingam, A. (2014). Large-scale multiuser SM-MIMO versus massive MIMO. In Information theory and applications workshop (ITA), 2014 (pp. 1–9).

  31. Tsang, Y., Poon, A., & Addepalli, S. (Dec 2011). Coding the beams: Improving beamforming training in mmwave communication system. In 2011 IEEE global telecommunications conference (GLOBECOM 2011) (pp. 1–6).

  32. Mo, J., & Heath, R. (2014). High SNR capacity of millimeter wave MIMO systems with one-bit quantization. In Information theory and applications workshop (ITA), 2014 (pp. 1–5).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Ahmed Haider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haider, S.A., Zhao, MJ. & Ngebani, I. MIMO Beamforming Architecture in Millimeter Wave Communication Systems. Wireless Pers Commun 97, 2597–2616 (2017). https://doi.org/10.1007/s11277-017-4625-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4625-1

Keywords

Navigation