Analytical Model of Deployment Methods for Application of Sensors in Non-hostile Environment

Abstract

Wireless Sensor Networks (WSNs) has become one the promising research theme due to the availability of wide range of applications useful for almost each and every area of society. One fundamental application of WSNs is event detection in a Region of Interest (RoI). A set of sensors are deployed to monitor any events inside RoI. In such monitoring applications, both the quality of detection as well as resource requirement in terms of sensors must be optimized while satisfying a certain level of detection guaranty. Therefore, carrying out an optimal sensor deployment is a challenging task for achieving a certain coverage quality with minimum energy consumption and network cost. This paper proposes analytical models for critically analyzing the performance of different deployment techniques to provide insight on the design parameters and system behaviors. Mathematical formulations have been derived to measure the quality of coverage, energy consumption and network cost of geometrical deployment patterns in terms of different metrics; namely, size of RoI, number of sensors and their sensing range. The deployment patterns are modeled by using different shapes of mathematical geometry such square, tri-tilling-hexagon and hexagon. Simulations are carried out using MATLAB considering realistic parameter setting and results are comparatively analyzed for deployment techniques. Analysis of results attests the superiority of Tri Hexagon Tiling (THT) deployment in terms of 2-coverage, energy consumption and network cost to the square and hexagon deployments. In terms of 3-coverage and 4-coverage, hexagon deployment is better as compared to THT and square deployments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    He, C., Kiziroglou, M. E., Yates, D. C., & Yeatman, E. M. (2011). A MEMS self-powered sensor and RF transmission platform for WSN nodes. Sensors Journal, IEEE, 11(12), 3437–3445.

    Article  Google Scholar 

  2. 2.

    Kaiwartya, O., Abdullah, A. H., Cao, Y., Raw, R. S., Kumar, S., Lobiyal, D. K., Isnin, I. F., Liu, X., & Shah, R. R. (2016). T-MQM: Testbed-based multi-metric quality measurement of sensor deployment for precision agriculture—a case study. IEEE Sensors Journal, 16(23), 8649–8664.

    Google Scholar 

  3. 3.

    Kumar, S., & Lobiyal, D. K. (2013). Sensing coverage prediction for wireless sensor networks in shadowed and multipath environment. The Scientific World Journal, 13(1), 1–13.

    Google Scholar 

  4. 4.

    Sharma, V., Patel, R. B., Bhadauria, H. S., & Prasad, D. Deployment schemes in wireless sensor network to achieve blanket coverage in large-scale open area: A review. Egyptian Informatics Journal, Elsevier, pp. 1, 2015 (in press)

  5. 5.

    Thiyagarajan, B., Ravisasthiri, P., Lalitha, P., Ambili, P., Thenmozhi, S., & Kumar, K. P. (2015). Target Tracking Using Wireless Sensor Networks: Survey. In Proceedings of the 2015 international conference on advanced research in computer science engineering & technology (ICARCSET), ACM, pp. 51–57.

  6. 6.

    Laoudias, C., Michaelides, M. P., & Panayiotou, C. G. (2014). ftTRACK: fault-tolerant target tracking in binary sensor networks. ACM Transactions on Sensor Networks (TOSN), 10(4), 24–64.

    Article  Google Scholar 

  7. 7.

    Chen, J., Li, J., He, S., Sun, Y., & Chen, H. H. (2010). Energy-efficient coverage based on probabilistic sensing model in wireless sensor networks. Communications Letters, IEEE, 14(9), 833–835.

    Article  Google Scholar 

  8. 8.

    Ramalakshmi, R., & Radhakrishnan, S. (2013). Coverage and connectivity guaranteed deterministic deployment pattern for WSN. In N. Chaki, N. Meghanathan & D. Nagamalai (Eds.), Computer networks & communications (NetCom) (pp. 341–347). New York: Springer.

    Google Scholar 

  9. 9.

    Yun, Z., Bai, X., Xuan, D., Lai, T. H., & Jia, W. (2010). Optimal deployment patterns for full coverage and k-connectivity (k ≤ 6) wireless sensor networks. IEEE/ACM Transactions on Networking (TON), 18(3), 934–947.

    Article  Google Scholar 

  10. 10.

    Vecchio, M., & López-Valcarce, R. (2015). Improving area coverage of wireless sensor networks via controllable mobile nodes: A greedy approach. Journal of Network and Computer Applications, 48(3), 1–13.

    Article  Google Scholar 

  11. 11.

    Tsai, H. W., Chu, C. P., & Chen, T. S. (2007). Mobile object tracking in wireless sensor networks. Computer Communications, 30(8), 1811–1825.

    Article  Google Scholar 

  12. 12.

    Shaktawat, S. P., & Sharma, O. P. (2014). Node deployment models and their performance parameters for wireless sensor network: A perspective. International Journal of Computer Applications, 88(9), 975–981.

    Google Scholar 

  13. 13.

    Le, N. T., & Jang, Y. M. (2015). Energy-efficient coverage guarantees scheduling and routing strategy for wireless sensor networks. International Journal of Distributed Sensor Networks, 15(1), 1–15.

    Article  Google Scholar 

  14. 14.

    Chizari, H., Hosseini, M., Poston, T., Razak, S. A., & Abdullah, A. H. (2011). Delaunay triangulation as a new coverage measurement method in wireless sensor network. Sensors, 11(3), 3163–3176.

    Article  Google Scholar 

  15. 15.

    Deif, D. S., & Gadallah, Y. (2014). Classification of wireless sensor networks deployment techniques. Communications Surveys & Tutorials, IEEE, 16(2), 834–855.

    Article  Google Scholar 

  16. 16.

    Choi, J., & Lee, C. (2011). Energy consumption and lifetime analysis in clustered multi-hop wireless sensor networks using the probabilistic cluster-head selection method. EURASIP Journal on Wireless Communications and Networking, 1, 1–13.

    Google Scholar 

  17. 17.

    Poe, W. Y., & Schmitt, J. B. (2009). Node deployment in large wireless sensor networks: coverage, energy consumption, and worst-case delay. In Asian internet engineering conference, ACM, (pp. 77–84)

  18. 18.

    Ammari, H. M., & Das, S. K. (2010). A study of k-coverage and measures of connectivity in 3D wireless sensor networks. Computers, IEEE Transactions on, 59(2), 243–257.

    Article  MATH  MathSciNet  Google Scholar 

  19. 19.

    Lazos, L., & Poovendran, R. (2006). Stochastic coverage in heterogeneous sensor networks. ACM Transactions on Sensor Networks (TOSN), 2(3), 325–358.

    Article  Google Scholar 

  20. 20.

    He, J., & Shi, H. (2012). Constructing sensor barriers with minimum cost in wireless sensor networks. Journal of Parallel and Distributed Computing, 72(12), 1654–1663.

    Article  Google Scholar 

  21. 21.

    Vales-Alonso, J., Parrado-García, F. J., López-Matencio, P., Alcaraz, J. J., & González-Castaño, F. J. (2013). On the optimal random deployment of wireless sensor networks in non-homogeneous scenarios. Ad Hoc Networks, 11(3), 846–860.

    Article  Google Scholar 

  22. 22.

    Ammari, H. M., & Das, S. K. (2012). Centralized and clustered k-coverage protocols for wireless sensor networks. IEEE Transactions on Computers, 61(1), 118–133.

    Article  MATH  MathSciNet  Google Scholar 

  23. 23.

    Tan, R., Xing, G., Wang, J., & So, H. C. (2010). Exploiting reactive mobility for collaborative target detection in wireless sensor networks. Mobile Computing, IEEE Transactions on, 9(3), 317–332.

    Article  Google Scholar 

  24. 24.

    Lazos, L., Poovendran, R., & Ritcey, J. A. (2009). Analytic evaluation of target detection in heterogeneous wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 5(2), 18.

    Article  Google Scholar 

  25. 25.

    Alam, K. M., Kamruzzaman, J., Karmakar, G., & Murshed, M. (2014). Dynamic adjustment of sensing range for event coverage in wireless sensor networks. Journal of Network and Computer Applications, 46, 139–153.

    Article  Google Scholar 

  26. 26.

    Beaudaux, J., Gallais, A., & Razafindralambo, T. Multiple coverage with controlled connectivity in wireless sensor networks. InProceedings of the 7th ACM workshop on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks, ACM, pp. 9–16, October, 2010

  27. 27.

    G. S. Rao and V. Vallikumari, “Hybrid Deployment Schemes for Wireless Sensor Networks,” In Proceedings of 4th international conference on networks and communications, Chennai, India, (pp. 349–357). 2013.

  28. 28.

    Park, P., Min, S. G., & Han, Y. H. A. (2010) Grid-based self-deployment schemes in mobile sensor networks. In: Ubiquitous information technologies and applications (CUTE), 2010 proceedings of the 5th international conference on, IEEE (pp. 1–5), December 2010.

  29. 29.

    Rafi, R. S., Rahman, M. M., Sultana, N., & Hossain, M. (2013). Energy and coverage efficient static node deployment model for wireless sensor network. International Journal of Scientific & Engineering Research, 4(4), 382–387.

    Google Scholar 

  30. 30.

    Li, R., Liu, X., Xie, W., & Huang, N. (2014). Deployment-based lifetime optimization model for homogeneous wireless sensor network under retransmission. Sensors, 14(12), 23697–23723.

    Article  Google Scholar 

  31. 31.

    Xiao J, Han S, Zhang Y, Xu G (2010) Hexagonal grid-based sensor deployment algorithm. In: Proceedings of control and decision conference (CCDC), 2010 Chinese (pp. 4342–4346). Xuzhou, China.

  32. 32.

    Aanchal, K., Kumar, S., Kaiwartya, O., & Abdullah, A. H. (2017). Green computing for wireless sensor networks: Optimization and Huffman coding approach. Peer-to-Peer Networking and Applications, 10(3), 592–609.

    Article  Google Scholar 

  33. 33.

    Jiang, X., Taneja, J., Ortiz, J., Tavakoli, A., Dutta, P., Jeong, J., et al. (2007). An architecture for energy management in wireless sensor networks. ACM SIGBED Review, 4(3), 31–36.

    Article  Google Scholar 

  34. 34.

    Cecílio, J., & Furtado, P. (2014). Wireless sensors in heterogeneous networked systems, Chapter 2 (pp. 5–25). Berlin: Sringer.

    Google Scholar 

  35. 35.

    Aderohunmu, F. A. (2010). Energy management techniques in wireless sensor networks: protocol design and evaluation. Thesis, University of Otago. http://hdl.handle.net/10523/376. Accessed 20 August 2015.

  36. 36.

    Dorling, K., Messier, G. G., Valentin, S., & Magierowski, S. (2015). Minimizing the net present cost of deploying and operating wireless sensor networks. IEEE Transactions on Network and Service Management, 12(3), 511–525.

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by Ministry of Education Malaysia (MOE) and conducted in collaboration with Research Management Center (RMC) at University Teknologi Malaysia (UTM) under VOT NUMBER: Q.J130000.2528.06H00. The research is also supported by the Jawaharlal Nehru University, New Delhi, India, under research grant UPE-II.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sushil Kumar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaiwartya, O., Kumar, S. & Abdullah, A.H. Analytical Model of Deployment Methods for Application of Sensors in Non-hostile Environment. Wireless Pers Commun 97, 1517–1536 (2017). https://doi.org/10.1007/s11277-017-4584-6

Download citation

Keywords

  • Sensor deployment
  • Analytical models
  • Wireless sensor networks
  • Energy consumption
  • Network cost
  • Deployment analysis