Skip to main content

Advertisement

Log in

Energy-Efficient Vertical Handover Parameters, Classification and Solutions over Wireless Heterogeneous Networks: A Comprehensive Survey

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In the last few decades, the popularity of wireless networks has been growing dramatically for both home and business networking. Nowadays, smart mobile devices equipped with various wireless networking interfaces are used to access the Internet, communicate, socialize and handle short or long-term businesses. As these devices rely on their limited batteries, energy-efficiency has become one of the major issues in both academia and industry. Due to terminal mobility, the variety of radio access technologies and the necessity of connecting to the Internet anytime and anywhere, energy-efficient handover process within the wireless heterogeneous networks has sparked remarkable attention in recent years. In this context, this paper first addresses the impact of specific information (local, network-assisted, QoS-related, user preferences, etc.) received remotely or locally on the energy efficiency as well as the impact of vertical handover phases, and methods. It presents energy-centric state-of-the-art vertical handover approaches and their impact on energy efficiency. The paper also discusses the recommendations on possible energy gains at different stages of the vertical handover process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. O2 TU Go—http://www.o2.co.uk/apps/tu-go.

  2. Three inTouch—http://www.three.co.uk/Discover/Three_inTouch.

  3. EE WiFi Calling—http://ee.co.uk/ee-and-me/why-ee/uks-no1-network/wifi-calling.

  4. Vodafone WiFi Calling—http://www.vodafone.co.uk/explore/network/network-improvements/wi-fi-calling/.

  5. Openet—http://www.openet.com/.

  6. Wi-Fi Network Database Provider WeFi—WeANDFS—http://www01.wefi.com/solution/.

References

  1. Cisco Visual Networking Index: Forecast and Methodology, 2014–2019 White Paper, Available: http://cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generationnetwork/white_paper_c11-481360.html. Accessed: 8 January 2016.

  2. Gustafsson, E., & Jonsson, A. (2003). Always best connected. IEEE Wireless Communications, 10, 49–55.

    Article  Google Scholar 

  3. Zeadally, S., Khan, S., & Chilamkurti, N. (2012). Energy-efficient networking: Past, present, and future. The Journal of Supercomputing, 62, 1093–1118.

    Article  Google Scholar 

  4. T. C. Group. Smart 2020: Enabling the low carbon economy in the information age. Available: http://www.smart2020.org/.

  5. Mahapatra, R., De Domenico, A., Gupta, R., & Calvanese Strinati, E. (2013). Green framework for future heterogeneous wireless networks. Computer Networks, 57, 1518–1528.

    Article  Google Scholar 

  6. Pentikousis, K. (2010). In search of energy-efficient mobile networking. IEEE Communications Magazine, 48, 95–103.

    Article  Google Scholar 

  7. Strinati, E. C., De Domenico, A., & Herault, L. (2011). Green communications: An emerging challenge for mobile broadband communication networks. Journal of Green Engineering, 1, 267–301.

    Google Scholar 

  8. Green Touch Initiative. Available: http://www.greentouch.org.

  9. Gruber, M., Blume, O., Ferling, D., Zeller, D., Imran, M.A., & Strinati, E.C. (2009). EARTH: Energy aware radio and network technologies. In PIMRC-2009, pp. 1–5.

  10. Han, C., Harrold, T., Armour, S., Krikidis, I., Videv, S., Grant, P. M., et al. (2011). Green radio: Radio techniques to enable energy-efficient wireless networks. IEEE Communications Magazine, 49, 46–54.

    Article  Google Scholar 

  11. Perrucci, G.P., Fitzek, F.H.P., & Widmer, J. (2011). Survey on energy consumption entities on the smartphone platform. In Vehicular Technology Conference (VTC Spring), pp. 1–6.

  12. Tuysuz, M. F. (2014). An energy-efficient QoS-based network selection scheme over heterogeneous WLAN–3G networks. Computer Networks, 75(Part A), 113–133.

    Article  Google Scholar 

  13. Tuysuz, M. F., & Trestian, R. (2015). A roadmap for a green interface selection standardization over wireless HetNets. San Diego, USA: Globecom.

    Book  Google Scholar 

  14. Márquez-Barja, J., Calafate, C. T., Cano, J.-C., & Manzoni, P. (2011). An overview of vertical handover techniques: Algorithms, protocols and tools. Computer Communications, 34, 985–997.

    Article  Google Scholar 

  15. Yan, X., Ahmet Şekercioğlu, Y., & Narayanan, S. (2010). A survey of vertical handover decision algorithms in Fourth Generation heterogeneous wireless networks. Computer Networks, 54, 1848–1863.

    Article  MATH  Google Scholar 

  16. Zekri, M., Jouaber, B., & Zeghlache, D. (2012). A review on mobility management and vertical handover solutions over heterogeneous wireless networks. Computer Communications, 35, 2055–2068.

    Article  Google Scholar 

  17. Pahlavan, K., Krishnamurthy, P., Hatami, A., Ylianttila, M., Makela, J.-P., Pichna, R., et al. (2000). Handoff in hybrid mobile data networks. IEEE Personal Communications, 7, 34–47.

    Article  Google Scholar 

  18. 3GPP TR 21.905 V6.9.0 (2005–2006), Technical Report 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Vocabulary for 3GPP Specifications (R6).

  19. Stemm, M., & Katz, R. H. (1998). Vertical handoffs in wireless overlay networks. Mobile Networks and Applications, 3, 335–350.

    Article  Google Scholar 

  20. Pollini, G. P. (1996). Trends in handover design. IEEE Communications Magazine, 34, 82–90.

    Article  Google Scholar 

  21. Trestian, R., Ormond, O., & Muntean, G.-M. (2012). On the impact of wireless network traffic location and access technology on mobile device energy consumption. In LCN, pp. 200–203.

  22. Trestian, R., Vien, Q.-T., Shah, P., & Mapp, G. (2015). Exploring energy consumption issues for multimedia streaming in LTE HetNet Small Cells. In LCN, pp. 498–501.

  23. Kassar, M., Kervella, B., & Pujolle, G. (2008). An overview of vertical handover decision strategies in heterogeneous wireless networks. Computer Communications, 31, 2607–2620.

    Article  Google Scholar 

  24. Tuysuz, M., & Mantar, H. (2015). Minimizing communication interruptions using smart proactive channel scanning over IEEE 802.11 WLANs. Wireless Personal Communications, 82, 2249–2274.

    Article  Google Scholar 

  25. Poole, I. UMTS WCDMA handover: Hard soft, softer, inter-RAT. Available: http://www.radio-electronics.com/info/cellulartelecomms/umts/umts-wcdma-handover-handoff.php.

  26. Panigrahi, P. Why no soft handover in LTE. Available: http://www.3glteinfo.com/soft-handover-lte/.

  27. Zhenxia, Z., Pazzi, R.W., Boukerche, A., & Landfeldt, B. (2010). Reducing handoff latency for WiMAX networks using mobility patterns. In WCNC, pp. 1–6.

  28. Chen, K.-C., & de Marca, J. R. B. (2008). Mobile WiMAX. New York: Wiley Online Library.

    Book  Google Scholar 

  29. Khan, A. N., Anwer, W., Munir, E. U., Farooqi, U., Khaliq, A., Malik, A., et al. (2013). Handover techniques in mobile WiMAX networks: Analysis and comparison. Middle-East Journal of Scientific Research, 15, 1599–1605.

    Google Scholar 

  30. Ghahfarokhi, B. S., & Movahhedinia, N. (2013). A survey on applications of IEEE 802.21 media independent handover framework in next generation wireless networks. Computer Communications, 36, 1101–1119.

    Article  Google Scholar 

  31. Taniuchi, K., Ohba, Y., Fajardo, V., Das, S., Tauil, M., Cheng, Y.-H., et al. (2009). IEEE 802.21: Media independent handover: Features, applicability, and realization. IEEE Communications Magazine, 47, 112–120.

    Article  Google Scholar 

  32. Vulic, N., De Groot, S. M. H., & Niemegeers, I. G. (2011). Vertical handovers among different wireless technologies in a UMTS radio access-based integrated architecture. Computer Networks, 55, 1533–1548.

    Article  Google Scholar 

  33. 3GPP TS 23.402. (2013). Architecture Enhancements for Non-3GPP Accesses, Release 11, Section 6.3.

  34. Castillo, Rodríguez, J. M., & María, J. (2013). Energy-efficient vertical handovers. Master of Science Thesis. Stockholm, Sweden: KTH Royal Institute of Technology, ICT School, Communication Systems.

  35. IEEE standard 802.11u. (2011). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications—amendment 9: interworking with external networks.

  36. Sankaran, C. (2012). Data offloading techniques in 3GPP Rel-10 networks: A tutorial. IEEE Communications Magazine, 50, 46–53.

    Article  Google Scholar 

  37. Johnson, T., Prado, R., Zagari, E., Badan, T., Cardozo, E., & Westberg, L. (2009). Performance evaluation of reactive and proactive handover schemes for ip micromobility networks. In WCNC, pp. 1–6.

  38. A Comparison of LTE Advanced HetNets and WiFi, Qualcomm White Paper. Available: https://www.qualcomm.com/documents/comparison-lte-advanced-hetnets-and-wi-fi. Accessed 8 January 2016.

  39. Integration of Cellular and Wi-Fi Networks, 4G Americas White Paper, September 2013. Available: http://www.4gamericas.org/files/3114/0622/2546/Integration_of_Cellular_and_WiFi_Networks_White_Paper-_9.25.13.pdf. Accessed 8 January 2016.

  40. Cellular & Wi-Fi Networks Convergence: Policy-Driven Intelligent Network Selection & Traffic Management, InterDigital White Paper, September 2015. Available: http://www.interdigital.com/white_papers/cellular–wifi-networks-convergence-policydriven-intelligent-network-selection–traffic-management-?r=y. Accessed 8 January 2016.

  41. LTE Aggregation and Unlicensed Spectrum, 4G Americas White Paper, September 2013. Available: http://www.4gamericas.org/files/1214/4648/2397/4G_Americas_LTE_Aggregation__Unlicensed_Spectrum_White_Paper_-_November_2015.pdf. Accessed 8 January 2016.

  42. Shafer, I., & Chang, M.L. (2010). Movement detection for power-efficient smartphone WLAN localization. In Proceedings of the 13th ACM International Conference on Modeling, Analysis, and Simulation of Wireless and Mobile Systems, pp. 81–90.

  43. Tuysuz, M.F., & Mantar, H.A. (2013). A novel energy-efficient QoS-aware handover scheme over IEEE 802.11 WLANs. In PIMRC, pp. 1045–1049.

  44. Trestian, R., Ormond, O., & Muntean, G.-M. (2012). Game theory-based network selection: Solutions and challenges. IEEE Communications Surveys and Tutorials, 14, 1212–1231.

    Article  Google Scholar 

  45. SuKyoung, L., Sriram, K., Kyungsoo, K., Yoon Hyuk, K., & Golmie, N. (2009). Vertical handoff decision algorithms for providing optimized performance in heterogeneous wireless networks. IEEE Transactions on Vehicular Technology, 58, 865–881.

    Article  Google Scholar 

  46. Celenlioglu, M.R., & Mantar, H.A. (2013). Location history based energy efficient vertical handover scheme. In Presented at the First International Symposium on Innovative Technologies in Engineering and Science.

  47. Chowdhury, M.Z., Jang, Y.M., Ji, C.S., Choi, S., Jeon, H., Jee, J. et al. (2009). Interface selection for power management in UMTS/WLAN overlaying network. In ICACT, pp. 795–799.

  48. Frei, S., Fuhrmann, W., Rinkel, A., & Ghita, B.V. (2011). Improvements to inter system handover in the EPC environment. In NTMS, pp. 1–5.

  49. Liu, H., Maciocco, C., Kesavan, V., & Low, A.L. (2009). Energy efficient network selection and seamless handovers in mixed networks. In WoWMoM, pp. 1–9.

  50. Chamodrakas, I., & Martakos, D. (2011). A utility-based fuzzy TOPSIS method for energy efficient network selection in heterogeneous wireless networks. Applied Soft Computing, 11, 3734–3743.

    Article  Google Scholar 

  51. Xenakis, D., Passas, N., Merakos, L., & Verikoukis, C. (2014). ARCHON: An ANDSF-assisted energy-efficient vertical handover decision algorithm for the heterogeneous IEEE 802.11/LTE-advanced network. In ICC, pp. 3166–3171.

  52. Coskun, G., Hokelek, I., & Cirpan, H.A. (2014). Energy efficient handover in HetNets using IEEE 802.21. In Distributed Computing in Sensor Systems (DCOSS), pp. 349–353.

  53. Lee, W., Kim, W., & Joe, I. (2014). A power-efficient vertical handover with MIH-based network scanning through consistency check. The Journal of Supercomputing, 69, 1027–1038.

    Article  Google Scholar 

  54. Trestian, R., Ormond, O., & Muntean, G. M. (2014). Enhanced power-friendly access network selection strategy for multimedia delivery over heterogeneous wireless networks. IEEE Transactions on Broadcasting, 60, 85–101.

    Article  Google Scholar 

  55. Bastos, J., Albano, M., Marques, H., Ribeiro, J., Rodriguez, J., & Verikoukis, C. (2012). Smart interface switching for energy efficient vertical handovers in ns-2. IET Communications, 6, 2228–2238.

    Article  Google Scholar 

  56. Nam, M., Choi, N., Seok, Y., & Choi, Y. (2004). WISE: Energy-efficient interface selection on vertical handoff between 3G networks and WLANs. In Personal, Indoor and Mobile Radio Communications, PIMRC 2004. 15th IEEE International Symposium on, pp. 692–698.

  57. Lee, S., & Golmie, N. (2006). Power-efficient interface selection scheme using paging of WWAN for WLAN in heterogeneous wireless networks. In ICC’06, pp. 1742–1747.

  58. Zhang, D., Ren, P., Wang, Y., Du, Q., & Sun, L. (2014). Energy management scheme for mobile terminals in energy efficient heterogeneous network. In WCSP, pp. 1–5.

  59. Pons, X., Mesodiakaki, A., Gruet, C., Naviner, L., Adelantado, F., Alonso, L. et al. (2014). An energy efficient vertical handover decision algorithm. In Globecom Workshops (GC Wkshps), pp. 1145–1150.

  60. Althunibat, S., Kontovasilis, K., & Granelli, F. (2014). A handover policy for energy efficient network connectivity through proportionally fair access. In European Wireless 2014; 20th European Wireless Conference; Proceedings of, pp. 1–6.

  61. Kim, B., Cho, Y., & Hong, J. (2014). AWNIS: Energy-efficient adaptive wireless network interface selection for industrial mobile devices. IEEE Transactions on Industrial Informatics, 10, 714–729.

    Article  Google Scholar 

  62. Seo, S., & Song, J. (2009). An energy-efficient interface selection for multi-mode terminals by utilizing out-of-band paging channels. Telecommunication Systems, 42, 151–161.

    Article  Google Scholar 

  63. Lee, S., Seo, S., & Golmie, N. (2005). An efficient power-saving mechanism for integration of WLAN and cellular networks. IEEE Communications Letters, 9, 1052–1054.

    Article  Google Scholar 

  64. Choi, Y., & Choi, S. (2007). Service charge and energy-aware vertical handoff in integrated IEEE 802.16 e/802.11 networks. In INFOCOM’07, pp. 589–597.

  65. Choi, Y., & Choi, S. (2009). Energy-aware WLAN scanning in integrated IEEE 802.16e/802.11 networks. Computer Communications, 32, 1588–1599.

    Article  Google Scholar 

  66. Inwhee, J., Won-Tae, K., & Seokjoon, H. (2008). A network selection algorithm considering power consumption in hybrid wireless networks. IEICE Transactions on Communications, 91, 314–317.

    Google Scholar 

  67. Petander, H. (2009). Energy-aware network selection using traffic estimation. In Proceedings of the 1st ACM Workshop on Mobile Internet Through Cellular Networks, pp. 55–60.

  68. Yang, W.-H., Wang, Y.-C., Tseng, Y.-C., & Lin, B.-S.P. (2009). An energy-efficient handover scheme with geographic mobility awareness in WiMAX–WiFi integrated networks. In Wireless Communications and Networking Conference, WCNC’09, pp. 1–6.

  69. Yang, W.-H., Wang, Y.-C., Tseng, Y.-C., & Lin, B.-S. P. (2010). Energy-efficient network selection with mobility pattern awareness in an integrated WiMAX and WiFi network. International Journal of Communication Systems, 23, 213–230.

    Article  Google Scholar 

  70. Desset, C., Ahmed, N., & Dejonghe, A. (2009). Energy savings for wireless terminals through smart vertical handover. In ICC’09, pp. 1–5.

  71. Rahmati, A., & Zhong, L. (2011). Context-based network estimation for energy-efficient ubiquitous wireless connectivity. IEEE Transactions on Mobile Computing, 10, 54–66.

    Article  Google Scholar 

  72. Xenakis, D., Passas, N., Gregorio, L.D., & Verikoukis, C. (2011). A context-aware vertical handover framework towards energy-efficiency. In Vehicular Technology Conference (VTC Spring), pp. 1–5.

  73. Fan, J., Zhang, S., & Zhou, W. (2012). Energy-friendly network selection in heterogeneous wireless networks. In Vehicular Technology Conference (VTC Spring), pp. 1–5.

  74. Kanno, I., Yamazaki, K., Ikeda, Y., & Ishikawa, H. (2010). Adaptive energy centric radio access selection for vertical handover in heterogeneous networks. In IEEE Wireless Communication and Networking Conference.

  75. Ikeda, Y., Yamazaki, K., Kanno, I., Hiehata, Y., & Ishikawa, H. (2010). Energy efficient wireless link monitoring using probability inequality for vertical handover. In PIMRC’10, pp. 206–211.

  76. Chen, X., Zhai, H., Wang, J., & Fang, Y. (2004). TCP performance over mobile ad hoc networks. Canadian Journal of Electrical and Computer Engineering, 29, 129–134.

    Article  Google Scholar 

  77. Araniti, G., Cosmas, J., Iera, A., Molinaro, A., Orsino, A., & Scopelliti, P. (2014). Energy efficient handover algorithm for green radio networks. In Broadband Multimedia Systems and Broadcasting (BMSB), pp. 1–6.

  78. Harjula, E., Kassinen, O., & Ylianttila, M. (2012). Energy consumption model for mobile devices in 3G and WLAN networks. In Consumer Communications and Networking Conference (CCNC), pp. 532–537.

  79. Lampropoulos, G., Kaloxylos, A., Passas, N., & Merakos, L. (2007). A power consumption analysis of tight-coupled WLAN/UMTS networks. In PIMRC’07, pp. 1–5.

  80. Wang, L., & Manner, J. (2010). Energy consumption analysis of WLAN, 2G and 3G interfaces. In Proceedings of the 2010 IEEE/ACM Int’l Conference on Green Computing and Communications & Int’l Conference on Cyber, Physical and Social Computing, pp. 300–307.

  81. Deruyck, M., Tanghe, E., Joseph, W., Vereecken, W., Pickavet, M., Dhoedt, B. et al. (2010). Towards a deployment tool for wireless access networks with minimal power consumption. In Personal, Indoor and Mobile Radio Communications Workshops (PIMRC Workshops), pp. 295–300.

  82. Comparing LTE and 3G Energy Consumption. Available: http://developer.att.com/application-resource-optimizer/docs/best-practices/comparing-lte-and-3g-energy-consumption.

  83. Deruyck, M., Vereecken, W., Tanghe, E., Joseph, W., Pickavet, M., Martens, L. et al. (2010). Comparison of power consumption of mobile WiMAX, HSPA and LTE access networks. In Telecommunications Internet and Media Techno Economics (CTTE), pp. 1–7.

  84. Tran, T., Kuhnert, M., & Wietfeld, C. (2012). Energy-efficient handoff decision algorithms for CSH-MU mobility solution. In Computer Communications and Networks (ICCCN), pp. 1–6.

  85. Calhan, A., & Çeken, C. (2011). Speed sensitive-energy aware adaptive fuzzy logic based vertical handoff decision algorithm. In Systems, Signals and Image Processing (IWSSIP), pp. 1–4.

  86. Tseng, Y.-C., Hsu, C.-S., & Hsieh, T.-Y. (2003). Power-saving protocols for IEEE 802.11-based multi-hop ad hoc networks. Computer Networks, 43, 317–337.

    Article  MATH  Google Scholar 

  87. Gupta, A., & Mohapatra, P. (2007). Energy consumption and conservation in wifi based phones: A measurement-based study. In SECON’07, pp. 122–131.

  88. Gomez, J., & Campbell, A.T. (2004). A case for variable-range transmission power control in wireless multihop networks. In INFOCOM’04, pp. 1425–1436.

  89. Choudhury, R.R., Yang, X., Ramanathan, R., & Vaidya, N.H. (2002). Using directional antennas for medium access control in ad hoc networks. In Proceedings of the 8th Annual International Conference on Mobile Computing and Networking, pp. 59–70.

  90. Chiasserini, C.F., & Rao, R.R. (2000). A distributed power management policy for wireless ad hoc networks. In WCNC, pp. 1209–1213.

  91. Alonso, L., & Agusti, R. (2004). Automatic rate adaptation and energy-saving mechanisms based on cross-layer information for packet-switched data networks. IEEE Communications Magazine, 42, S15–S20.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) under Grant No: 114E075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Fatih Tuysuz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuysuz, M.F., Trestian, R. Energy-Efficient Vertical Handover Parameters, Classification and Solutions over Wireless Heterogeneous Networks: A Comprehensive Survey. Wireless Pers Commun 97, 1155–1184 (2017). https://doi.org/10.1007/s11277-017-4559-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4559-7

Keywords

Navigation