E2PKA: An Energy-Efficient and PV-Based Key Agreement Scheme for Body Area Networks


Recently, several types of body sensors have been developed and adopted to monitor health conditions of patients. Because health-related information is very sensitive, this information should be handled securely. Key agreement is the first basic step that should be performed to provide body sensors with security services such as encryption and authentication. In particular, key agreement using physiological values (PVs) as the source of a secret key (termed PV-based key agreement) has attracted much attention because it does not require any pre-shared secret information. Key agreement among body sensors should be extremely efficient because the battery lifetime is considered the same as that of the body sensors. Unfortunately, in the design of previous PV-based key-agreement methods, power consumption was not adequately considered, making them impractical. In this paper, we propose a key-agreement method between body sensors, the energy-efficient and PV-based key agreement scheme (E2PKA), which is extremely efficient in terms of reducing the power consumption. The significant savings in power consumption of body sensors come from the reduced communication, which is the main reason for battery drain. As a result, E2PKA results in a power consumption savings of at least 90% for body sensors when compared to previous PV-based key-agreement methods.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Frequency-domain linear regression. Available. http://www.mathworks.co.kr/help/signal/ug/frequency-domain-linear-regression.html?refresh=true, urldate = 2016-01-15.

  2. 2.

    Ubpulse 360, laxtha inc. Available. http://www.laxtha.kr/LXD/LXD27_ubpulse360_Manual.pdf , urldate = 2016-01-15.

  3. 3.

    Ali, A., & Khan, F. (2014). A broadcast-based key agreement scheme using set reconciliation for wireless body area networks. Journal of Medical Systems, 38(5), 33.

    Article  Google Scholar 

  4. 4.

    Bagade, P., Banerjee, A., Milazzo, J., Gupta, S.K. (May 2013). Protect your BSN: No handshakes, just namaste! In 2013 IEEE international conference on body sensor networks (BSN), pp. 1–6.

  5. 5.

    Bao, S.-D., Poon, C. C. Y., Zhang, Y.-T., & feng Shen, L. (2008). Using the timing information of heartbeats as an entity identifier to secure body sensor network. IEEE Transactions on Information Technology in Biomedicine, 12(6), 772–779.

    Article  Google Scholar 

  6. 6.

    Bao, S.-D., Zhang, Y.-T., Shen, L.-F. (2006). A design proposal of security architecture for medical body sensor networks. In Proceedings of the international workshop on wearable and implantable body sensor networks, BSN ’06, pp. 84–90, Washington, DC, USA, 2006. IEEE Computer Society.

  7. 7.

    Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 1). New York: Springer.

    Google Scholar 

  8. 8.

    Blake-Wilson, S., & Menezes, A. (1999). Authenticated Diffie-Hellman key agreement protocols. In Proceedings of the selected areas in cryptography, SAC ’98 (pp. 339–361). London, UK: Springer.

  9. 9.

    Chang, S.-Y., Hu, Y.-C., Anderson, H., Fu, T., & Huang, E. Y. L. (2012). Body area network security: Robust key establishment using human body channel. In Proceedings of the 3rd USENIX conference on health security and privacy, HealthSec’12 (pp. 5–5). Berkeley: CA, USA, USENIX Association.

  10. 10.

    Cherukuri ,S., Venkatasubramanian, K. & Gupta S. K. S. (2003). Biosec: A biometric based approach for securing communication in wireless networks of biosensors implanted in the human body. In 2003 international conference on parallel processing workshops, 2003. Proceedings, pp. 432–439.

  11. 11.

    Denning, T., Borning, A., Friedman, B., Gill, B.T., Kohno, T. & Maisel, W.H. (2010). Patients, pacemakers, and implantable defibrillators: Human values and security for wireless implantable medical devices. In Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’10 (pp. 917–926). New York, NY, USA: ACM.

  12. 12.

    Denning, T., Fu, K. & Kohno, T. (2008). Absence makes the heart grow fonder: New directions for implantable medical device security. In Proceedings of the 3rd conference on hot topics in security, HOTSEC’08, (pp. 5:1–5:7), Berkeley, CA, USA: USENIX Association.

  13. 13.

    Gollakota, S., Hassanieh, H., Ransford, B., Katabi, D., & Fu, K. (2011). They can hear your heartbeats: Non-invasive security for implantable medical devices. ACM SIGCOMM Computer Communication Review, 41(4), 2–13.

    Article  Google Scholar 

  14. 14.

    Greenspon, A. J., Patel, J. D., Lau, E., Ochoa, J. A., Frisch, D. R., Ho, R. T., et al. (2011). 16-year trends in the infection burden for pacemakers and implantable cardioverter–defibrillators in the united states: 1993 to 2008. Journal of the American College of Cardiology, 58(10), 1001–1006.

    Article  Google Scholar 

  15. 15.

    Halperin, D., Heydt-Benjamin, T., Ransford, B., Clark, S., Defend, B., Morgan, W., Fu, K., Kohno, T. & Maisel, W. (2008). Pacemakers and implantable cardiac defibrillators: Software radio attacks and zero-power defenses. In IEEE symposium on security and privacy, 2008. SP 2008, pp. 129–142.

  16. 16.

    Hei, X., Du, X., Wu, J. & Hu, F. (2010). Defending resource depletion attacks on implantable medical devices. In Global telecommunications conference (GLOBECOM 2010), 2010 IEEE, pp. 1–5.

  17. 17.

    Hu, C., Cheng, X., Zhang, F., Wu, D., Liao, X., & Chen, D. (2013). OPFKA: Secure and efficient ordered-physiological-feature-based key agreement for wireless body area networks. In INFOCOM, 2013 Proceedings IEEE, pp. 2274–2282.

  18. 18.

    Jovanov, E., Milenkovic, A., Otto, C., & de Groen, P. (2005). A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2(1), 1–10.

    Article  Google Scholar 

  19. 19.

    Juels, A., & Sudan, M. (2006). A fuzzy vault scheme. Designs, Codes and Cryptography, 38(2), 237–257.

    Article  MATH  MathSciNet  Google Scholar 

  20. 20.

    Lazaro, A., Girbau, D., & Villarino, R. (2010). Analysis of vital signs monitoring using an IR-UWB radar. Progress in Electromagnetics Research, 100, 265–284.

    Article  Google Scholar 

  21. 21.

    Le Cam, L. (1990). Maximum likelihood: An introduction. International statistical review/Revue Internationale de Statistique, pp. 153–171.

  22. 22.

    Li, C., Raghunathan, A. & Jha, N. (2011). Hijacking an insulin pump: Security attacks and defenses for a diabetes therapy system. In 2011 13th IEEE international conference on e-health networking applications and services (Healthcom), pp. 150–156.

  23. 23.

    Lorincz, K., Malan, D., Fulford-Jones, T., Nawoj, A., Clavel, A., Shnayder, V., et al. (2004). Sensor networks for emergency response: Challenges and opportunities. IEEE Pervasive Computing, 3(4), 16–23.

    Article  Google Scholar 

  24. 24.

    Minsky, Y., Trachtenberg, A., & Zippel, R. (2003). Set reconciliation with nearly optimal communication complexity. IEEE Transactions on Information Theory, 49(9), 2213–2218.

    Article  MATH  MathSciNet  Google Scholar 

  25. 25.

    C. of Federal Regulations. “title 47 part 95 subpart i c.f.r 47, 95 subpar i, federal communications commission - medical device radiocommunication service(medradio)”, http://transition.fcc.gov/Bureaus/Engineering_Technology/Orders/2000/fcc00211.pdf,urldate = 2014-11-13.

  26. 26.

    Poon, C. C. Y., Zhang, Y.-T., & Bao, S.-D. (2006). A novel biometrics method to secure wireless body area sensor networks for telemedicine and m-health. IEEE Communications Magazine, 44(4), 73–81.

    Article  Google Scholar 

  27. 27.

    Rasmussen, K. B., Castelluccia, C., Heydt-Benjamin, T. S., & Capkun, S. (2009). Proximity-based access control for implantable medical devices. In Proceedings of the 16th ACM conference on computer and communications security, CCS ’09 (pp. 410–419). New York, NY, USA: ACM.

  28. 28.

    Rostami, M., Juels, A., & Koushanfar, F. (2013). Heart-to-heart (h2h): Authentication for implanted medical devices. In Proceedings of the 2013 ACM SIGSAC conference on computer & #38; communications security, CCS ’13 (pp. 1099–1112). New York, NY, USA: ACM.

  29. 29.

    Rukhin, A., Soto, J., Nechvatal, J., Barker, E., Leigh, S., Levenson, M., & et al. (2010). A statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST special publication 800-22 (revised may 15).

  30. 30.

    Shen, W., Ning, P., He, X., & Dai, H. (2013). Ally friendly jamming: How to jam your enemy and maintain your own wireless connectivity at the same time. Proceedings of the 2013 IEEE symposium on security and privacy, SP ’13 (pp. 174–188). Washington, DC, USA: IEEE Computer Society.

  31. 31.

    Venkatasubramanian, K., Banerjee, A. & Gupta, S. K. S. (2008). Plethysmogram-based secure inter-sensor communication in body area networks. In Military communications conference, 2008. MILCOM 2008. IEEE, pp. 1–7.

  32. 32.

    Venkatasubramanian, K., Banerjee, A., & Gupta, S. K. S. (2010). Pska: Usable and secure key agreement scheme for body area networks. IEEE Transactions on Information Technology in Biomedicine, 14(1), 60–68.

    Article  Google Scholar 

  33. 33.

    Venkatasubramanian, K., Venkatasubramanian, Banerjee, A. & Gupta, S. (2008). EKG-based key agreement in body sensor networks. In: INFOCOM workshops 2008, IEEE, pp. 1–6.

  34. 34.

    Wander, A., Gura, N., Eberle, H., Gupta, V. & Shantz, S. (2005). Energy analysis of public-key cryptography for wireless sensor networks. In Third IEEE international conference on pervasive computing and communications, 2005. PerCom 2005, pp. 324–328.

  35. 35.

    Xu, F., Qin, Z., Tan, C., Wang, B. & Li, Q. (2011). IMDGuard: Securing implantable medical devices with the external wearable guardian. In INFOCOM, 2011 proceedings IEEE, pp. 1862–1870.

  36. 36.

    Zhan, C., Baine, W., Sedrakyan, A., & Steiner, C. (2008). Cardiac device implantation in the united states from 1997 through 2004: A population-based analysis. Journal of General Internal Medicine, 23(1), 13–19.

    Article  Google Scholar 

  37. 37.

    Zhou, J., Cao, Z. & Dong, X. (2013). BDK: Secure and efficient biometric based deterministic key agreement in wireless body area networks. In Proceedings of the 8th international conference on body area networks, BodyNets ’13 (pp. 488–494), ICST, Brussels, Belgium, Belgium. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).

Download references


This research was supported by Samsung Electronics.

Author information



Corresponding author

Correspondence to Dong Hoon Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choi, W., Kim, I.S. & Lee, D.H. E2PKA: An Energy-Efficient and PV-Based Key Agreement Scheme for Body Area Networks. Wireless Pers Commun 97, 977–998 (2017). https://doi.org/10.1007/s11277-017-4547-y

Download citation


  • PV-based key agreement
  • Body area networks
  • Security